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§1 - The Basic Operations

1.1

What are the entries a21 and a23 of the matrix A =

1 2 5
2 7 8
0 9 4

?

Solution.
a21 = 2, a23 = 8

1.2

Determine the products AB and BA for the following values of A and B:

A =

[
1 2 3
3 3 1

]
, B =

−8 −4
9 5
−3 −2

 A =

[
1 4
1 2

]
, B =

[
6 −4
3 2

]

Solution.
(i) [

1 2 3
3 3 1

]−8 −4
9 5
−3 −2

 =

[
−8 + 18− 9 −4 + 10− 6
−24 + 27− 3 −12 + 15− 2

]
=

[
1 0
0 1

]
−8 −4

9 5
−3 −2

[1 2 3
3 3 1

]
=

−8− 12 −16− 12 −24− 4
9 + 15 18 + 15 27 + 5
−3− 6 −6− 6 −9− 2

 =

−20 −28 −28
24 33 32
−9 −12 −11



(ii) [
1 4
1 2

] [
6 −4
3 2

]
=

[
6 + 12 −4 + 8
6 + 6 −4 + 4

]
=

[
18 4
12 0

]
[
6 −4
3 2

] [
1 4
1 2

]
=

[
6− 4 24− 8
3 + 2 12 + 4

]
=

[
2 16
5 16

]
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1.3

Let A =
[
a1 . . . an

]
be a row vector and let B =

b1...
bn

 be a column vector. Compute the products

AB and BA.

Solution.

AB =
[
a1 . . . an

] b1...
bn

 = a1b1 + · · ·+ anbn

BA =

b1...
bn

 [a1 . . . an
]
=

a1b1 . . . anb1
...

. . .
...

a1bn . . . anbn



1.4

Verify the associative law for the matrix product
[
1 2
0 1

] [
0 1 2
1 1 3

]14
3

.

Solution. ([
1 2
0 1

] [
0 1 2
1 1 3

])14
3

 =

[
2 3 8
1 1 3

]14
3

 =

[
38
14

]
[
1 2
0 1

][0 1 2
1 1 3

]14
3

 =

[
1 2
0 1

] [
10
14

]
=

[
38
14

]

1.5

Let A, B, and C be matrices of sizes ℓ×m, m×n, and n×p. How many multiplications are required
to compute the product AB? In which order should the triple product ABC be computed, so as to
minimize the number of multiplications required?

Solution.
If we let D = AB, then we have dij = ai1b1j + · · ·+ aimbmj . Therefore each entry requires m
multiplications, and there are ℓ× n entries of D. Hence we need m× (ℓ× n) multiplications.

By the reasoning above, (AB)C will first require mln multiplications, followed by nlp
giving mln+nlp multiplications in total. Similarly, A(BC) will need nmp+mlp multiplications.
Hence A(BC) should be computed first if and only if ℓn(m+ p) ≤ mp(n+ ℓ).
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1.6

Compute
[
1 a

1

] [
1 b

1

]
and

[
1 a

1

]n
Solution. [

1 a
1

] [
1 b

1

]
=

[
1 a+ b

1

]
Repeatedly applying this result gives [

1 a
1

]n
=

[
1 na

1

]
(formally prove by induction, if you like)

1.7

Find a formula for

1 1 1
1 1

1

n

, and prove it by induction.

Solution.
We claim 1 1 1

1 1
1

n

=

1 n 1
2n(n+ 1)

1 n
1


Proof.
The base case is n = 1, which clearly works after substituting.
Now suppose the claim holds for some n. Then note1 1 1

1 1
1

n+1

=

1 1 1
1 1

1

n 1 1 1
1 1

1

 IH
=

1 n 1
2n(n+ 1)

1 n
1

1 1 1
1 1

1


=

1 + 0 + 0 1 + n+ 0 1 + n+ 1
2n(n+ 1)

0 + 0 + 0 0 + 1 + 0 0 + 1 + n
0 + 0 + 0 0 + 0 + 0 0 + 0 + 1


=

1 n+ 1 2(n+1)
2 + n(n+1)

2
1 n+ 1

1


=

1 (n+ 1) 1
2(n+ 1)(n+ 2)

1 (n+ 1)
1


which completes the induction.
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1.8

Compute the following products by block multiplication:
1 1 1 5
0 1 0 1

1 0 0 1
0 1 1 0




1 2 1 0
0 1 0 1

1 0 0 1
0 1 1 3

 ;

 0 1 2

0 1 0
3 0 1

 1 2 3

4 2 3
5 0 4



Solution.
(i) We first denote our 2× 2 matrices

I =

[
1 0
0 1

]
A =

[
1 1
0 1

]
B =

[
1 5
0 1

]
D =

[
0 1
1 0

]
A′ =

[
1 2
0 1

]
D′ =

[
0 1
1 3

]
Then we want to compute[

A B
I D

] [
A′ I
I D′

]
=

[
AA′ +BI AI +BD′

IA′ +DI II +DD′

]
=

[
AA′ +B A+BD′

A′ +D I +DD′

]
We have

AA′ =

[
1 3
0 1

]
BD′ =

[
5 16
1 3

]
DD′ =

[
1 3
0 1

]
Hence our product is 

2 8 6 17
0 2 1 4
1 3 2 3
1 1 0 2


(ii) Again we denote

I =

[
1 0
0 1

]
B =

[
1 2

]
C =

[
0
3

]
B′ =

[
2 3

]
C ′ =

[
4
5

]
D′ =

[
2 3
0 4

]
and want to compute[

0 B
C I

] [
1 B′

C ′ D′

]
=

[
0 · 1 +BC ′ 0B′ +BD′

C1 + IC ′ CB′ + ID′

]
=

[
BC ′ BD′

C + C ′ CB′ +D′

]
We have

BC ′ = 14 BD′ =
[
2 11

]
CB′ =

[
0 0
6 9

]
Hence our product is 14 2 11

4 2 3
8 6 13


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1.9

Let A,B be square matrices.

(a) When is (A+B)(A−B) = A2 −B2?

(b) Expand (A+B)3

Solution.
(a) We always have

(A+B)(A−B) = (A+B)A+ (A+B)(−B) = AA+BA−AB −BB

Hence it equals A2 −B2 if and only if AB = BA.

(b)

(A+B)3 = [(A+B)(A+B)](A+B) = [(A+B)A+ (A+B)B](A+B)

= [A2 +BA+AB +B2](A+B)

= [A2 +BA+AB +B2]A+ [A2 +BA+AB +B2]B

= A3 +BA2 +ABA+B2A+A2B +BAB +AB2 +B3

1.10

Let D be the diagonal matrix with diagonal entries d1, . . . , dn, and let A = (aij) be an arbitrary
n× n matrix. Compute the products DA and AD.

Solution.
If we write the rows and columns of A as

A =


R1

R2

. . .
Rn

 =
[
C1 C2 . . . Cn

]

then we have

DA =


d1R1

d2R2

. . .
dnRn

 AD =
[
d1C1 d2C2 . . . dnCn

]
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1.11

Prove that the product of upper triangular matrices is upper triangular.

Solution.

Proof.
Let A and B be two upper triangular matrices, i.e. square matrices of the form

A =

a11 . . . a1n
. . .

...
ann

 , B =

b11 . . . b1n
. . .

...
bnn


Note that aij = 0 if j > i, and that this property is equivalent to being upper triangular. Hence
for C = AB, it suffices to show i > j =⇒ cij = 0.

Let i > j. Then we have

cij = ai1b1j + · · ·+ ainbnj =

i−1∑
ℓ=1

aiℓbℓj +

n∑
ℓ=i

aiℓbℓj

However, note

• when i > ℓ, we have aiℓ = 0 and each term in the first summation is zero.

• when ℓ ≥ i > j, we have bℓj = 0 and each term in the second summation is zero.

Hence
i−1∑
ℓ=1

aiℓbℓj =
n∑
ℓ=i

aiℓbℓj = 0 =⇒ cij = 0
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1.12

In each case, find all 2× 2 matrices that commute with the given matrix.

(a)
[
1 0
0 0

]
(b)
[
0 1
0 0

]
(c)
[
2 0
0 6

]
(d)
[
1 3
0 1

]
(e)
[
2 3
0 6

]

Solution.
(a) [

a b
c d

] [
1 0
0 0

]
=

[
a 0
c 0

]
;

[
1 0
0 0

] [
a b
c d

]
=

[
a b
0 0

]
The two matrices are equal iff b = c = 0. Therefore we have commuting set{[

a 0
0 d

] ∣∣∣∣ a, d ∈ R
}

(b) [
a b
c d

] [
0 1
0 0

]
=

[
0 a
0 c

]
;

[
0 1
0 0

] [
a b
c d

]
=

[
c d
0 0

]
The matrices are equal iff c = 0 and a = d. Therefore we have commuting set{[

a b
0 a

] ∣∣∣∣ a, b ∈ R
}

(c) [
a b
c d

] [
2 0
0 6

]
=

[
2a 6b
2c 6d

]
;

[
2 0
0 6

] [
a b
c d

]
=

[
2a 2b
6c 6d

]
The matrices are equal iff b = c = 0. Therefore we have commuting set{[

a 0
0 d

] ∣∣∣∣ a, d ∈ R
}

(d) [
a b
c d

] [
1 3
0 1

]
=

[
a 3a+ b
c 3c+ d

]
;

[
1 3
0 1

] [
a b
c d

]
=

[
a+ 3c b+ 3d

c d

]
The matrices are equal iff c = 0 and a = d. Therefore we have commuting set{[

a b
0 a

] ∣∣∣∣ a, b ∈ R
}

(e) [
a b
c d

] [
2 3
0 6

]
=

[
2a 3a+ 6b
2c 3c+ 6d

]
;

[
2 3
0 6

] [
a b
c d

]
=

[
2a+ 3c 2b+ 3d

6c 6d

]
The matrices are equal iff c = 0 and 3a+ 4b− 3d = 0. Therefore we have commuting set{[

a b
0 d

] ∣∣∣∣ 3a+ 4b− 3d = 0

}

8



1.13

A square matrix A is nilpotent if Ak = 0 for some k > 0. Prove that if A is nilpotent, then I +A is
invertible. Do this by finding the inverse.

Solution.

Proof.
Let A be a nilpotent matrix. We claim

(I +A)−1 = I −A+A2 −A3 + · · · ±Ak−1

To verify this, we compute

(I +A)(I −A+A2 − · · · ±Ak−1) = (I −A+A2 − · · · ±Ak−1) + (A−A2 +A3 − · · · ±Ak)

= I + (−A+A) + (A2 −A2) + · · ·+ (±Ak−1 ∓Ak−1)±Ak

= I + 0 + 0 + · · ·+ 0± 0 = I

1.14

Find infinitely many matrices B such that BA = I2, when

A =

2 3
1 2
1 1


and prove that there is no matrix C such that AC = I3.

Solution.
Choose any real number x. Then

[
x −x− 1 2− x
x 1− x −x− 1

]2 3
1 2
1 1

 =

[
2x+ (−x− 1) + (2− x) 3x− 2(x+ 1) + (2− x)
2x+ (1− x) + (−x− 1) 3x+ 2(1− x)− (x+ 1)

]
=

[
1 0
0 1

]

However note for any 2× 3 matrix we have2 3
1 2
1 1

[a b c
x y z

]
=

2a+ 3x 2b+ 3y 2c+ 3z
a+ 2x b+ 2y c+ 2z
a+ x b+ y c+ z

 ?
=

1 0 0
0 1 0
0 0 1


For the last equality to hold, in particular we need a+ x = 0, i.e. a = −x. But then we also
need 0 = a + 2x = (−x) + 2x = x. Thus a = x = 0. But now 2a + 3x = 0 ̸= 1, so the last
equality cannot hold.
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1.15

With A arbitrary, determine the products eijA,Aeij , ejAek, eiiAejj , and eijAekℓ.

Solution.
In all problems, A is m× n.
(i) Let U = eij and C = UA. Then ukℓ = 1 if kℓ = ij and zero otherwise. Now

ckℓ = uk1a1ℓ + · · ·+ ukjajℓ + · · ·+ uknanℓ =

{
ajℓ if k = i

0 if k ̸= i

in other words, the ith row of eijA is the jth row of A, with all other rows being zero.

(ii) Let U = eij and C = AU . Then

ckℓ = ak1u1ℓ + · · ·+ akiuiℓ + · · ·+ akmumℓ =

{
aki if ℓ = j

0 if ℓ ̸= j

in other words, the jth column of Aeij is the ith column of A, with all other columns being zero.

(iii) Aek is the kth column of A, but since ej is defined to be column vector, ej(Aek)
is only valid when A only has one row, in which case (Aek) is a scalar and we are just scaling ej .
If we let ej be a row vector instead, then we are taking the jth entry of Aek, which is simply the
entry ajk.

(iv) From (i), we have eiiA is the ith row of A and all zeros elsewhere. From (ii), we
have (eiiA)ejj is the jth column of that matrix and all zeros elsewhere. This leaves only aij
untouched, therefore eiiAejj = aijeij .

(v) From (i), eijA takes jth row of A and puts it in the ith row of a zero matrix.
From (ii), (eijA)ekℓ then takes the kth column of that matrix (whose only untouched entry is
ajk), and puts that in the ℓth column of a zero matrix. In other words, the entry ajk is now at
row i and column ℓ. Hence eijAekℓ = ajkeiℓ.
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§2 - Row Reduction

2.1

For the reduction of the matrix M , determine the elementary matrices corresponding to each
operation. Compute the product P of these elementary matrices and verify that PM is indeed the
end result.

M =

1 1 2 1 5
1 1 2 6 10
1 2 5 2 7

→

1 1 2 1 5
0 0 0 5 5
0 1 3 1 2

→

1 1 2 1 5
0 1 3 1 2
0 0 0 5 5

→

1 0 −1 0 3
0 1 3 1 2
0 0 0 1 1

→

1 0 −1 0 3
0 1 3 0 1
0 0 0 1 1


Solution.
We perform M ′ = E6E5E4E3E2E1M , where

• E1 : R2 7→ R2 −R1

• E2 : R3 7→ R3 −R1

• E3 : R2 ↔ R3

• E4 : R1 7→ R1 −R2

• E5 : R3 7→ 1
5R3

• E6 : R2 7→ R2 −R3

which correspond to elementary matrices

E1 =

 1 0 0
−1 1 0
0 0 1

 E2 =

 1 0 0
0 1 0
−1 0 1

 E3 =

1 0 0
0 0 1
0 1 0



E4 =

1 −1 0
0 1 0
0 0 1

 E5 =

1 0 0
0 1 0
0 0 0.2

 E6 =

1 0 0
0 1 0
0 −1 1


Now we have

P = E6E5E4E3E2E1 =

 2 0 −1
−0.8 −0.2 1
−0.2 0.2 0


and indeed

PM =

 2 0 −1
−0.8 −0.2 1
−0.2 0.2 0

1 1 2 1 5
1 1 2 6 10
1 2 5 2 7

 =

1 0 −1 0 3
0 1 3 0 1
0 0 0 1 1


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2.2

Find all solutions of the system of equations AX = B when

A =

1 2 1 1
3 0 0 4
1 −4 −2 2

 and B = (a)

00
0

 , (b)

11
0

 , (c)

02
2


Solution.
We first row reduce1 2 1 1

3 0 0 4
1 −4 −2 2

 E1→

3 0 0 4
1 2 1 1
1 −4 −2 2

 E2→

1 0 0 4/3
1 2 1 1
1 −4 −2 2

 E3→

1 0 0 4/3
0 2 1 −1/3
1 −4 −2 2


E4→

1 0 0 4/3 b1
0 2 1 −1/3 b2
0 −4 −2 2/3 b3

 E5→

1 0 0 4/3
0 1 1/2 −1/6
0 −4 −2 2/3

 E6→

1 0 0 4/3
0 1 1/2 −1/6
0 0 0 0


where

E1 : R1 ↔ R2 E2 : R1 7→ 1
3R1 E3 : R2 7→ R2 −R1

E4 : R3 7→ R3 −R1 E5 : R2 7→ 1
2R2 E6 : R3 7→ R3 − 4R2

We do these operations on each B to get our final system:

(a)

B =

00
0

→

00
0

→

00
0

→

00
0

→

00
0

→

00
0

→

00
0


Hence we have the system 

x1 +
4
3x4 = 0

x2 +
1
2x3 −

1
6x4 = 0

0 = 0

and solution set 


−4
3x4

1
6x4 −

1
2x3

x3
x4


∣∣∣∣∣∣∣∣ x3, x4 ∈ R


(b)

B =

11
0

→

11
0

→

1
3
1
0

→

1
3
2
3
0

→

 1
3
2
3
−1

3

→

 1
3
1
3
−1

3

→

 1
3
1
3
−1


Hence we have the system 

x1 +
4
3x4 =

1
3

x2 +
1
2x3 −

1
6x4 =

1
3

0 = −1

which has no solutions
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(c)

B =

02
2

→

20
2

→

2
3
0
2

→

 2
3
−2

3
2

→

 2
3
−2

3
4
3

→

 2
3
−1

3
4
3

→

 2
3
−1

3
0


Hence we have the system 

x1 +
4
3x4 =

2
3

x2 +
1
2x3 −

1
6x4 = −1

3

0 = 0

and solution set 


2
3 − 4

3x4
−1

3 + 1
6x4 −

1
2x3

x3
x4


∣∣∣∣∣∣∣∣ x3, x4 ∈ R


2.3

Find all solutions of the equation x1 + x2 + 2x3 − x4 = 3.

Solution.
We have three degrees of freedom in choosing x1, x2, x3. The equation forces x4 = x1+x2+2x3−3.
Hence we have solution set


x1
x2
x3

x1 + x2 + 2x3 − 3


∣∣∣∣∣∣∣∣ x1, x2, x3 ∈ R


2.4

Determine the elementary matrices used in the row reduction example below, and verify that their
product is A−1. [

1 5
2 6

]
E1→
[
1 5
0 −4

]
E2→
[
1 5
0 1

]
E3→
[
1 0
0 1

]
Solution.
We have

E1 =

[
1 0
−2 1

]
E2 =

[
1 0
0 −1

4

]
E3 =

[
1 −5
0 1

]
and their product is

E3E2E1I =

[
−1.5 1.25
0.5 −0.25

]
= −1

4

[
6 −5
−2 1

]
= A−1
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2.5

Find inverses of the following matrices:[
1

1

]
,

[
3 5
1 2

]
,

[
1 1

1

] [
1

1

] [
3 5
1 2

]

Solution.
(i) [

0 1
1 0

]−1

=
1

−1

[
0 −1
−1 0

]
=

[
0 1
1 0

]
(ii) [

3 5
1 2

]−1

=
1

1

[
2 −5
−1 3

]
=

[
2 −5
−1 3

]
(iii) Here we use the formula (ABC)−1 = C−1(AB)−1 = C−1B−1A−1

([
1 1
0 1

] [
0 1
1 0

] [
3 5
1 2

])−1

=

[
2 −5
−1 3

] [
0 1
1 0

] [
1 −1
0 1

]

2.6

The matrix below is based on the Pascal triangle. Find its inverse.
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1


Solution. 

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1


−1

=


1
-1 1
1 -2 1
-1 3 -3 1
1 -4 6 -4 1



14



2.7

Make a sketch showing the effect of multiplication by the matrix A =

[
2 −1
2 3

]
on the plane R2.

Solution.

x

y

e1

e2

Original grid in R2

A
x′

y′

Ae1

Ae2

Transformed grid under A

2.8

Prove that if a product AB of n× n matrices is invertible, so are the factors A and B.

Solution.

Proof.
Suppose that AB has an inverse C. Then we have by associativity

I = (AB)C = A(BC) =⇒ A−1 = BC

and
I = C(AB) = (CA)B =⇒ B−1 = CA

Hence both A and B are invertible.

15



2.9

Consider an arbitrary system of linear equations AX = B, where A and B are real matrices.

(a) Prove that if the system of equations AX = B has more than one solution then it has infinitely
many.

(b) Prove that if there is a solution in the complex numbers there there is also a real solution.

Solution.

(a) Proof.
Suppose a system AX = B has two distinct solutions, say X̂ and X̃. Then for any real
number α between 0 and 1, we have by linearity

A(αX̂ + (1− α)X̃) = A(αX̂) +A((1− α)X̃) = αAX̂ + (1− α)AX̃

= αB + (1− α)B

= (α+ 1− α)B = B

And since there are infinitely many values α ∈ [0, 1], we have infinitely many solutions.

[Of course, we could allow α to be any real number, but the geometric interpretation of
picking a point on the line between X̂ and X̃ is visualized (and motivated) easier.]

(b) Proof.
Let X̂ be a complex solution to AX = B. We can decompose X̂ into its real and imaginary
parts, say X̂ = Y + iZ for real matrices Y and Z. Now note that

B = AX̂ = A(Y + iZ) = AY + iAZ

since A,B, Y, Z are all matrices with real-number entries, We have AY and AZ both real
matrices, and therefore {

AY = real part(B) = B

AZ = imaginary part(B) = 0

In particular, we have Y is a real solution to our system.

16



2.10

Let A be a square matrix. Show that if the system AX = B has a unique solution for some particular
column vector B, then it has a unique solution for all B.

Solution.
Suppose that AX = B has a unique solution for a fixed B, say X = X̂. Now by Theorem 1.2.21
it suffices to show that the system AX = 0 only has the solution X = 0.

Suppose that AX = 0. Now note that

B = B + 0 = AX̂ +AX = A(X̂ +X)

But AY = B if and only if Y = X̂, thus we have

X̂ +X = X̂ =⇒ X = 0

17



§3 - The Matrix Transpose

3.1

A matrix B is symmetric if B = Bt. Prove that for any square matrices B,BBt, and B + Bt are
symmetric, and that if A is invertible, then (A−1)t = (At)−1.

Solution.
Let B be a square matrix. Then note that

(BBt)t = (Bt)tBt = BBt

(B +Bt)t = Bt + (Bt)t = Bt +B = B +Bt

Hence BBt and B +Bt are both symmetric.

Now let A be invertible. Then

At(A−1)t = (A−1A)t = It = I

Thus (A−1)t is the inverse of At, i.e. (At)−1 = (A−1)t

3.2

Let A and B be symmetric n× n matrices. Prove that the product AB is symmetric if and only if
AB = BA.

Solution.
=⇒ : Suppose AB is symmetric. Then by definition

AB = (AB)t = BtAt = BA

⇐= : Suppose AB = BA. Then

(AB)t = BtAt = BA = AB

3.3

Suppose we first make a row operation, and then a column operation, on a matrix A. Explain what
happens if we switch the order of these operations, making the column operation first, followed by
the row operation.

Solution.
Let E be our row operation and E′ be our column operation. Then the result of these operations
in the first case is (EA)E′. The result of swapping the order gives E(AE′). However, by
associativity of matrix multiplication we have (EA)E′ = E(AE′). Hence changing the order of
the two operations has no effect.

18



3.4

How much can a matrix be simplified if both row and column operations are allowed?

Solution.
We claim we can reduce any nonzero matrix to the block form[

I
]

Proof.
Let A be an arbitrary nonzero matrix. Then we can reduce to row echelon form A′ using row
operations. Next, we can permute columns, since those are column operations, to get all the
pivots to be all together. This gives the form[

I B
]

Finally we can make column operations to eliminate each entry of B one element at a time using
the appropriate column of I. This leaves us with the desired form.
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§4 - Determinants

4.1

Evaluate the following determinants:

(a)
[

1 i
2− i 3

]
(b)
[
1 1
1 −1

]
(c)

2 0 1
0 1 0
1 0 2

 (d)


1 0 0 0
5 2 0 0
8 6 3 0
0 9 7 4


Solution.

(a)

det

[
1 i

2− i 3

]
= 3− (2i+ 1) = 2− 2i

(b)

det

[
1 1
1 −1

]
= −1− 1 = −2

(c)

det

2 0 1
0 1 0
1 0 2

 = 2det

[
1 0
0 2

]
− 0 det

[
0 1
0 2

]
+ 1det

[
0 1
1 0

]
= 4− 0− 1 = 3

(d)

det


1 0 0 0
5 2 0 0
8 6 3 0
0 9 7 4

 = 1det

2 0 0
6 3 0
9 7 4

− 5 det

0 0 0
6 3 0
9 7 4

+ 8det

0 0 0
2 0 0
9 7 4

− 0 det

0 0 0
2 0 0
6 3 0


= 24− 0 + 0− 0 = 24

4.2

Verify the rule detAB = (detA)(detB) for the matrices

A =

[
2 3
1 4

]
and B =

[
1 1
5 −2

]

Solution.

detA = det

[
2 3
1 4

]
= 8− 3 = 5 detB = det

[
1 1
5 −2

]
= −2− 5 = −7

detAB = det

[
17 −4
21 −7

]
= −119 + 84 = −35 = 5 · −7
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4.3

Compute the determinant of the following n× n matrix using induction on n:

2 −1
−1 2 −1

−1 2 −1

−1
. . .

2 −1
−1 2


Solution.
We claim the determinant is n+ 1.

Proof.
We use strong induction on n. For n = 1, we have det

[
2
]
= 2. For n = 2, we have

det

[
2 −1
−1 2

]
= 4− 1 = 3. Now we expand along the first column (twice) to get

det


2 −1
−1 2 −1

−1 2 −1

−1
. . .

2 −1
−1 2

 = 2det


2 −1
−1 2 −1

−1
. . .

2 −1
−1 2


︸ ︷︷ ︸

n−1

+det


−1
−1 2 −1

−1
. . .

2 −1
−1 2



= 2det


2 −1
−1 2 −1

−1
. . .

2 −1
−1 2


︸ ︷︷ ︸

n−1

+(−1) det

 2 −1

−1
. . .

2 −1
−1 2


︸ ︷︷ ︸

n−2

− (−1) det

−1
. . .

2 −1
−1 2


︸ ︷︷ ︸

top row zeros

IH
= 2n− (n− 1) + 0

= n+ 1
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4.4

Let A be an n× n matrix. Determine det(−A) in terms of detA.

Solution.
We claim det(−A) = (−1)n detA.

Proof.
We induct on n. When n = 1, we have det

[
−a
]
= −a = − det

[
a
]
. Assuming the result holds

for (n− 1)× (n− 1) matrices and letting B = −A, we can apply the formula

det(B) = b11 det(B11) + (−1)b21 det(B21) + · · ·+ (−1)n−1bn1 det(Bn1)

= −a11 det(−A11)− (−1)a21 det(−A21)− · · · − (−1)n−1an1 det(−An1)

IH
= −1[a11(−1)n−1 detA11 + (−1)a21(−1)n−1 detA21 + · · ·+ (−1)n−1an1(−1)n−1 detAn1]

= (−1)n[a11 detA11 + (−1)a21 detA21 + · · ·+ (−1)n−1 detAn1]

= (−1)n detA

which completes the induction.

4.5

Use row reduction to prove that detAt = detA.

Solution.

Proof.
Let A be a square matrix. Consider one step of row reduction, say EA = A′. Note that the
corresponding column operation of At is simply Et, as

AtEt = (EA)t = A′t

Now suppose we have shown that det(A′) = det(A′t). Then

det(E) det(A) = det(EA) = det(A′) = det(A′t) = det(AtEt) = det(At) det(Et)

Note that if E interchanges rows or multiplies a row by a scalar, then E is symmetric and E = Et

(see Equation (1.2.4)). If E adds a multiple of a row to another, then Et also does the same
operation and by Corollary 1.4.13 we have det(E) = det(Et). Hence we have det(A) = det(At)
after canceling the det(E) terms.

Now by induction it suffices to prove the case when A is row reduced. Since A is
square, either A = I or the bottom row is all zeros. If A = I, then clearly det(A) = det(At).
Otherwise, let A have a row of all zeros. Then by Theorem 1.4.10(c) we have det(A) = 0. Hence
A is not invertible, so At is not invertible either. Thus det(At) = 0 as well.
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4.6

Prove that det

[
A B
0 D

]
= (detA)(detD), if A and D are square blocks.

Solution.

Proof.
We first rewrite our given matrix[

I 0
0 D

] [
I B
0 I

] [
A 0
0 I

]
=

[
I B
0 D

] [
A 0
0 I

]
=

[
A B
0 D

]
We next compute the determinant of these three matrices:

Claim 1: det

[
I 0
0 D

]
= detD.

Letting I be n × n, we induct on n. Clearly for n = 0 we have
[
I0 0
0 D

]
= D.

Otherwise, note that [
In 0
0 D

]
=

1 In−1 0
0 D


and by expanding by minors on the first column gives

det

[
In 0
0 D

]
= 1 · det

[
In−1 0
0 D

]
+ 0 + · · ·+ 0 = detD

where the last equality is our inductive hypothesis.

Claim 2: det

[
I B
0 I

]
= 1.

Note that we can generalize this claim to say the determinant of an upper triangular
matrix is the product of the diagonal entries. However in our particular case note[

In B
0 I

]
=

1 B
In−1 B
0 I


where B is the first row of B and B is the remaining block of B. Now by the same
argument of Claim 1, induction and expanding by minors along the first column, we
have our result.

Claim 3: det

[
A 0
0 I

]
= detA.

If A is k × k, then we can make 2k row and column swaps to get our matrix in the

form
[
I 0
0 A

]
(send row 1 to row k + 1, 2 to k + 2, etc. and the same for columns).

Thus by Theorem 1.4.10(b) and Claim 1 we have

det

[
A 0
0 I

]
= (−1)2k det

[
I 0
0 A

]
= detA

Combining these claims gives our result.
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§5 - Permutation Matrices

5.1

Write the following permutations as products of disjoint cycles:

(12)(13)(14)(15) (123)(234)(345) (1234)(2345) (12)(23)(34)(45)(51)

Solution. NB: Each column applies one cycle, working right to left:
(i)

1 7→ 5 7→ 5 7→ 5 7→ 5

2 7→ 2 7→ 2 7→ 2 7→ 1

3 7→ 3 7→ 3 7→ 1 7→ 2

4 7→ 4 7→ 1 7→ 3 7→ 3

5 7→ 1 7→ 4 7→ 4 7→ 4


=⇒ (15432)

(ii)
1 7→ 1 7→ 1 7→ 2

2 7→ 2 7→ 3 7→ 1

3 7→ 4 7→ 2 7→ 3

4 7→ 5 7→ 5 7→ 5

5 7→ 3 7→ 4 7→ 4


=⇒ (12)(45)

(iii)
1 7→ 1 7→ 2

2 7→ 3 7→ 4

3 7→ 4 7→ 1

4 7→ 5 7→ 5

5 7→ 2 7→ 3


=⇒ (12453)

(iv)
1 7→ 5 7→ 4 7→ 3 7→ 2 7→ 1

2 7→ 2 7→ 2 7→ 2 7→ 3 7→ 3

3 7→ 3 7→ 3 7→ 4 7→ 4 7→ 4

4 7→ 4 7→ 5 7→ 5 7→ 5 7→ 5

5 7→ 1 7→ 1 7→ 1 7→ 1 7→ 2


=⇒ (2345)

1
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5.2

Let p be the permutation (1342) of four indices.

(a) Find the associated permutation matrix P .

(b) Write p as a product of transpositions and evaluate the corresponding matrix product.

(c) Determine the sign of p.

Solution.

(a)

P =


0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0


(b)

p = (1342) = (12)(14)(13)

⇝


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

(12)


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0


︸ ︷︷ ︸

(14)


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1


︸ ︷︷ ︸

(13)

=


0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0


︸ ︷︷ ︸

(142)


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1


︸ ︷︷ ︸

(13)

=


0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0


︸ ︷︷ ︸

P

(c) As p can be written as the product of three transpositions, it is odd. Another way to see
this is calculating detP = −1.

5.3

Prove that the inverse of a permutation matrix P is its transpose.

Solution.

Proof.
Consider a permutation matrix P =

∑
i

epi,i. Then we have (using formula (1.1.23)),

P tP =

∑
j

ej,pj

(∑
i

epi,i

)
=
∑
i,j

ej,pjepi,i =
∑
i̸=j

ej,pjepi,i︸ ︷︷ ︸
= 0

+
∑
i

ei,piepi,i =
∑
i

ei,i = I
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5.4

What is the permutation matrix associated to the permutation of n indices defined by p(i) = n−i+1?
What is the cycle decomposition of p? What is its sign?

Solution.
We have associated permutation matrix

P =


1

. .
.

1
1


We can write this in cycles

p = (1 n)(2 n-1) . . . (⌊n+1
2 ⌋ ⌈n+1

2 ⌉)

which has sign (−1)n+1.

5.5

In the text, in the products qp and pq of the permutations p = (341)(25) and q = (1452) were seen
to be different. However, both products turned out to be 3-cycles. Is this an accident?

Solution.
There is nothing special about the product being 3-cycles. Consider two similar-looking permu-
tations

p′ = (431)(25) and q′ = (1532)

Then we have p′q′ = (12435) and q′p′ = (14235), which are different but not 3-cycles.

However, it is true in general that if qp is a k-cycle, then pq will also be a k-cycle.
Using some group-theoretic notation, we can write

pq = pq(pp−1) = p(qp)p−1

so if we write qp = (a1, . . . , ak), we then have

p(a1, . . . , ak)p
−1 = (p(a1), . . . , p(ak))
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§6 - Other Formulas for the Determinant

6.1

(a) Compute the determinants of the following matrices by expansion on the bottom row:[
1 2
3 4

] 1 1 2
2 4 2
0 2 1

 4 −1 1
1 1 −2
1 −1 1

 a b c
1 0 1
1 1 1


(b) Compute the determinants of these matrices using the complete expansion.

(c) Compute the cofactor matrices of these matrices, and verify Theorem 1.6.9 for them.

Solution.

(a)

det

[
1 2
3 4

]
= −3 det[2] + 4 det[1] = −6 + 4 = −2

det

1 1 2
2 4 2
0 2 1

 = 0det

[
1 2
4 2

]
− 2 det

[
1 2
2 2

]
+ 1det

[
1 1
2 4

]
= 0(−6)− 2(−2) + 1(2) = 6

det

4 −1 1
1 1 −2
1 −1 1

 = det

[
−1 1
1 −2

]
+det

[
4 1
1 −2

]
+det

[
4 −1
1 1

]
= 1(1)+1(−9)+1(5) = −3

det

a b c
1 0 1
1 1 1

 = det

[
b c
0 1

]
− det

[
a c
1 1

]
+ det

[
a b
1 0

]
= b− (a− c)− b = c− a

(b)

det

[
1 2
3 4

]
= 1 · 4− 3 · 2 = −2

det

1 1 2
2 4 2
0 2 1

 = 1 · 4 · 1 + 1 · 2 · 0 + 2 · 2 · 2− 2 · 4 · 0− 1 · 2 · 2− 1 · 2 · 1

= 4 + 0 + 8− 0− 4− 2 = 6

det

[
4 −1 1
1 1 −2
1 −1 1

]
= 4 · 1 · 1 +−1 · −2 · 1 + (1 · 1 · −1)− 1 · 1 · 1− (4 · −2 · −1)− (−1 · 1 · 1)

= 4 + 2− 1− 1− 8 + 1 = −3

det

a b c
1 0 1
1 1 1

 = a · 0 · 1 + b · 1 · 1 + c · 1 · 1− c · 0 · 1− a · 1 · 1− b · 1 · 1

= 0 + b+ c− 0− a− b = c− a
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(c)

cof
([

1 2
3 4

])
=

[
4 −3
−2 1

]t
=

[
4 −2
−3 1

]

cof

1 1 2
2 4 2
0 2 1

 =

 0 −2 4
3 1 −2
−6 2 2

t

=

 0 3 −6
−2 1 2
4 −2 2



cof

4 −1 1
1 1 −2
1 −1 1

 =

−1 −3 −2
0 3 3
1 9 5

t

=

−1 0 1
−3 3 9
−2 3 5



cof

a b c
1 0 1
1 1 1

 =

 −1 0 1
c− b a− c b− a
b c− a −b

t

=

−1 c− b b
0 a− c c− a
1 b− a −b


which after inspecting the inverses, we see the theorem (A−1 = 1

detA cof(A)) holds:

[
1 2
3 4

]−1

=

[
−2 −1
−3

2 −1
2

] 1 1 2
2 4 2
0 2 1

−1

=

 0 1
2 −1

−1
3

1
6

1
3

−1
3

1
2

5
6


4 −1 1
1 1 −2
1 −1 1

−1

=


1
3 0 −1

3

1 −1 −3
2
3 −1 −5

3


a b c
1 0 1
1 1 1

−1

=

−
1

c−a
c−b
c−a

b
c−a

0 −1 1
1

c−a
b−a
c−a − b

c−a


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6.2

Let A be an n× n matrix with integer entries aij . Prove that A is invertible, and that its inverse
A−1 has integer entries, if and only if detA = ±1.

Solution.

Proof.
⇐= : Suppose that detA = ±1.
By the cofactor matrix theorem, we have A is invertible and A−1 = 1

αC, where C is the cofactor
matrix of A and α = detA = ±1. Note that for each entry of C we have

cij = (−1)i+j detAji

but A has integer entries and the determinant is a function of adding and multiplying its
entries (seen, e.g., via the complete expansion formula (1.6.4)). Thus C has integer entries, and
therefore A−1 = ±C also has integer entries.

=⇒ : Suppose that detA ̸= ±1.
If detA = 0, then A is not invertible and we are done. Otherwise, we may assume detA is
not -1, 0, or 1. By the same argument as above, A is invertible and its cofactor matrix C has
integer coefficients. However, now A−1 = 1

detAC. If detA, which is necessarily an integer,
does not divide every entry of C, then A−1 will have at least one noninteger entry and we are done.

We now assume the remaining possibility, namely that α := detA divides every entry
of C, for the sake of contradiction. If we write C = αC ′, where C ′ has integer entries, then note
the cofactor matrix theorem also tells us that CA = αI. But now

αI = CA = (αC ′)A = α(C ′A) =⇒ αn = det(αI) = det(αC ′A) = αn det(C ′A)

Hence after dividing by αn (which we know is nonzero) from both sides we get 1 = (detC ′)(detA).
But C ′ has integer entries, so in particular detC ′ is an integer. Therefore we are multiplying
two integers to get 1, forcing detA = ±1 and we get a contradiction. Thus α does not divide all
entries of C and we have A−1 with at least one noninteger entry.

[A nice one-liner of forward direction is that if A and A−1 both have integer entries then their
determinants must also be integers yet I = AA−1 =⇒ 1 = det I = (detA)(detA−1)]
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Miscellaneous Problems

M.1

Let a 2n × 2n matrix be given in the form M =

[
A B
C D

]
, where each block is an n × n matrix.

Suppose that A is invertible and that AC = CA. Use block multiplication to prove that detM =
det(AD − CB). Give an example to show that this formula need not hold if AC ̸= CA.

Solution.

Proof.
Note that we can write[

A B
C D

]
=

[
I 0

CA−1 I

] [
A 0
0 D − CA−1B

] [
I A−1B
0 I

]
By the same argument/result in Exercise 4.6, we have

det

[
I 0

CA−1 I

]
= 1, det

[
A 0
0 D − CA−1B

]
= (detA)(det(D−CA−1B)), det

[
I A−1B
0 I

]
= 1

Hence

det

[
A B
C D

]
= (detA)(det(D − CA−1B)) = det(AD −ACA−1B) = det(AD − CB)

where the final equality comes from AC = CA.

For a counterexample in the more general case, consider

A =

[
2 1
−1 2

]
B =

[
−2 2
−2 −1

]
C =

[
2 −2
0 2

]
D =

[
1 1
1 −2

]
Note that A is invertible and

AC =

[
4 −2
−2 6

]
̸=
[
4 −2
−2 4

]
= CA

We then get

det

[
A B
C D

]
= det


2 1 −2 2
−1 2 −2 −1
2 −2 1 1
0 2 1 −2

 = 23

But

det (AD − CB) = det

([
3 0
1 −5

]
−
[
0 6
−4 −2

])
= det

[
3 −6
5 −3

]
= 21
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M.2

Let A be an m × n matrix with m < n. Prove that A has no left inverse by comparing A to the
square n× n matrix obtained by adding (n−m) rows of zeros at the bottom.

Solution.

Proof.
Suppose otherwise, i.e. there exists B such that BA = In. Then using block notation consider

the n × n matrix A′ =

[
A
Z

]
, where Z is the (n − m) × n matrix of all zeros. Note that in

particular A′ is not invertible. However by block matrix rules we have

[
B Zt

] [A
Z

]
= BA+ Z ′Z = In

Hence A′ has an inverse, a contradiction.

M.3

The trace of a square matrix is the sum of its diagonal entries:

trA = a11 + a22 + · · ·+ ann

Show that tr(A + B) = trA + trB, that trAB = trBA, and that if B is invertible, then trA =
trBAB−1.

Solution.

Proof.
(i) Let C = A+B. Then cij = aij + bij , and so

trC = c11+· · ·+cnn = (a11+b11)+· · ·+(ann+bnn) = (a11+· · ·+ann)+(b11+· · ·+bnn) = trA+trB

(ii) Let C = AB and D = BA. Then cij = ai1b1j + · · ·+ ainbnj and similarly
dij = bi1a1j + · · ·+ binanj . Then

trC = c11 + c22 + · · ·+ cnn

= (a11b11 + · · ·+ a1nbn1)

+ (a21b12 + · · ·+ a2nbn2)

+ . . .

+ (an1b1n + · · ·+ annbnn)

= (b11a11 + · · ·+ b1nan1) + · · ·+ (bn1a1n + · · ·+ bnnann)

= d11 + · · ·+ dnn = trD

where the third equality comes from regrouping the terms vertically.

(iii) Applying (ii), we get

tr[BAB−1] = tr[B(AB−1)] = tr[(AB−1)B] = tr[A(B−1B)] = trA
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M.4

Show that the equation AB −BA = I has no solution in real n× n matrices A and B.

Solution.

Proof.
Suppose otherwise, i.e. AB − BA = I for some square matrices A and B. Notice that
tr−C = − trC follows almost immediately from the definition of trace. Now using this and the
properties of M.3, we have

n = tr I = tr(AB −BA) = trAB + tr−BA = trBA− trBA = 0

which is a contradiction.

M.5

Write the matrix
[
1 2
3 4

]
as a product of elementary matrices, using as few as you can, and prove

that your expression is as short as possible.

Solution.
Consider the row reduction

A =

[
1 2
3 4

]
R2−3R1−→

[
1 2
0 −2

]
−0.5R2−→

[
1 2
0 1

]
R1−2R2−→

[
1 0
0 1

]
= I

We can write these row operations as E3E2E1A = I, where

E1 =

[
1 0
−3 1

]
E2 =

[
1 0
0 −1

2

]
E3 =

[
1 −2
0 1

]
Therefore we have A = E−1

1 E−1
2 E−1

3 , with inverses

E−1
1 =

[
1 0
3 1

]
E−1

2 =

[
1 0
0 −2

]
E−1

3 =

[
1 2
0 1

]
Note that these are indeed elementary matrices. We claim three matrices is the fewest needed.

Proof.
Each elementary matrix is a row operation, so it suffices to prove that we only need three
row operations to reduce A to I. Note that we need the 2 and 3 entries to both become zero
without multiplying the whole row by zero, hence we need at least two row-addition operations.
Furthermore, the determinant of A is −2, but the row-addition operations will always have
determinant 1. Hence at least one scaling row operation will be necessary. Therefore we need at
least three row operations in total, which is a bound we have achieved above. Hence three row
operations is indeed the minimum.
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M.6

Determine the smallest integer n such that every invertible 2× 2 matrix can be written as a product
of at most n elementary matrices.

Solution.
We claim n = 4.

Proof.

We start out with a general invertible matrix
[
a b
c d

]
. We want to row-reduce this to the identity.

Consider cases:

• If a = 0, this forces bc ̸= 0. Then we have[
0 b
c d

]
R1↔R2−→

[
c d
0 b

]
1
c
R1−→
[
1 d/c
0 b

]
1
b
R2−→
[
1 d/c
0 1

]
R1− d

c
R2−→
[
1 0
0 1

]
• If a ̸= 0, then we can do[

a b
c d

]
1
a
R1−→
[
1 b/a
c d

]
R2−cR1−→

[
1 b/a
0 d− bc/a

] a
ad−bc

R2

−→
[
1 b/a
0 1

]
R1− b

a
R2−→
[
1 0
0 1

]
As this works in general, we have an upper bound of four row operations required for any
invertible matrix. Now consider the specific matrix

A =

[
0 2
3 4

]
Clearly we can row reduce this in four row operations by following the a = 0 case above. We

claim we cannot do any better. First, note that the left side needs to look like
[
1
0

]
, which can

be achieved with a row-swap and row-scaling, or by two row-additions. In either case, we need
two row operations to get the left side properly reduced. Furthermore, neither pair of operations
result in a reduced right side, so we need to perform a row-addition and row-scaling to fully
reduce to the identity. This gives a lower bound of four row operations, which is achieved in the
above process. Therefore n = 4.
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M.7

(a) Prove the Vandermonde determinant:

det

 1 1 1
a b c
a2 b2 c2

 = (a− b)(b− c)(c− a)

(b) Prove that an analogous formula for n× n matrices, using appropriate row operations to clear
out the first column.

(c) Use the Vandermonde determinant to prove that there is a unique polynomial p(t) of degree n
that takes arbitrary prescribed values at n+ 1 points t0, . . . , tn.

Solution.

(a) Proof.
Since adding multiples of rows does not change the determinant (Thm 1.4.10(a)), note that

det

 1 1 1
a b c
a2 b2 c2

 = det

1 1 1
0 b− a c− a
0 b2 − ab c2 − ac

 = det

[
b− a c− a

(b− a)b (c− a)c

]

where we first add −aR2 to R3 and then −aR1 to R2. The second equality is just expanding
along the first column. Furthermore, we can pull scalars out of whole rows and columns
when taking the determinant (Thm 1.4.10(c)), so we have

det

[
b− a c− a

(b− a)b (c− a)c

]
= (b− a)(c− a) det

[
1 1
b c

]
= (b− a)(c− a)(c− b)

which after rearranging and swapping signs we get the desired formula.

(b) Proof.
We calculate following determinant by the same reasoning as in (a):

det


1 1 . . . 1
t1 t2 . . . tn
...

...
. . .

...

tn−1
1 tn−1

2 . . . tn−1
n

 = det


1 1 . . . 1
0 t2 − t1 . . . tn − t1
...

...
. . .

...

0 tn−1
2 − t1t

n−2
2 . . . tn−1

n − t1t
n−2
n



= det

 t2 − t1 . . . tn − t1
...

. . .
...

(t2 − t1)t
n−2
2 . . . (tn − t1)t

n−2
n


= (t2 − t1) . . . (tn − t1) det

 1 . . . 1
...

. . .
...

tn−2
2 . . . tn−2

n


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Note that this matrix is just (n− 1)× (n− 1) equivalent of our starting matrix, so we can
do this process again and get something like

(t2 − t1) . . . (tn − t1)(t3 − t2) . . . (tn − t2) det

 1 . . . 1
...

. . .
...

tn−3
3 . . . tn−3

n


Inductively, we get the final formula

det


1 1 . . . 1
t1 t2 . . . tn
...

...
. . .

...

tn−1
1 tn−1

2 . . . tn−1
n

 =
n−1∏
i=1

n∏
j=i+1

(tj − ti)

(c) Proof.
We want to find a polynomial p(t) = ant

n + · · ·+ a1t+ a0 such that p(ti) = si for some fixed
pairs (ti, si) for 0 ≤ i ≤ n. In other words, we have the system

S :=

s0...
sn

 =

a0 + a1t0 + · · ·+ ant
n
0

...
a0 + a1tn + · · ·+ ant

n
n

 =

1 t0 . . . tn0
...

...
. . .

...
1 tn . . . tnn


a0...
an

 =: TA

Note T is the transpose of the matrix in (b), and by Exercise 4.5 we have detT = detT t =∏
j>i(tj − ti), which is nonzero since the ti’s are necessarily distinct. Thus T is invertible

and in particular we have a unique solution to our system, which are the coefficients for our
unique polynomial.
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M.8

Consider a general system AX = B of m linear equations in n unknowns, where m and n are not
necessarily equal. The coefficient matrix A may have a left inverse L, a matrix such that LA = In.
If so, we may try to solve the system as learn to do in school:

AX = B =⇒ LAX = LB =⇒ X = LB

But when we try to check our work by running the solution backward, we run into trouble: If
X = LB, then AX = ALB. We seem to want L to be a right inverse, which isn’t what was given.

(a) Work some examples to convince yourself that there is a problem here.

(b) Exactly what does the sequence of steps made above show? What would the existence of a right
inverse show? Explain carefully.

Solution.

(a) Let A =

[
1
0

]
. This has a left inverse, namely L =

[
1 0

]
. However, if we let B =

[
0
1

]
, we

get an issue:

X = LB =
[
1 0

] [0
1

]
= 0 =⇒ AX = 0 ̸= B

Now if we let B =

[
2
0

]
, then we have

X = LB =
[
1 0

] [2
0

]
= 2 =⇒ AX = B

so LB is in fact a solution to this particular system.

(b) The key behind these sequence of steps is that LB will be the only solution to the
system if one exists. Indeed, if there exists X̂ such that AX̂ = B, then the se-
quence exactly says X̂ = LB. However, we may be starting with a system with no
solution, in which case writing AX = B is not actually possible, hence the problem.
[NB: In linear algebra terms, the injectivity of A as a linear operator is given by the
existence of a left inverse, but we do not know a priori if B is in the image/column space of A]

Now supposing A has a right inverse R, i.e. AR = Im, then the matrix X = RB
will always be a solution since

AX = A(RB) = (AR)B = B

However, we are not guaranteed that RB is the only solution to the system, and in fact
there may be infinitely many solutions. [Again, in L.A. terms we have the surjectivity of A
from the right inverse but the kernel/null space of A may vary]
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M.9

Let A be a real 2× 2 matrix, and let A1, A2 be the columns of A. Let P be the parallelogram whose
vertices are 0, A1, A2, A1 +A2. Determine the effect of elementary row operations on the area of P ,
and use this to prove that the absolute value of the determinant of A is equal to the area of P .

Solution.
We go through each elementary row operation:

1. Row-addition: This corresponds to a shear mapping, which has no effect on area (this is most
easily seen by starting with a rectangle, which after shearing will not change base or height,
but rather just slant).

2. Row-swap: This corresponds to a reflection across the line y = x, which has no effect on area.

3. Row-scale: This corresponds to a scaling an entire axis, which will accordingly scale the area
by that same factor.

x

y

shear: R1 7→ R1 +R2

x

y

reflection: R1 ↔ R2

x

y

scale: R1 7→ 1.5R1

Above we have illustrated with the parallelogram A =

[
2 0.5
0.5 1.5

]
.

With this we claim that Area(P ) = |detA|.

Proof.
If A is not invertible, then detA = 0 but this also means its columns are proportional. Thus the
parallelogram degenerates to a single line or point, both of which have no area.

Now suppose A is invertible. Then we can write A as a product of elementary matri-
ces, say A = E1E2 . . . EnI. We induct on n. If n = 0, then our starting parallelogram is
the unit square, which has area = 1 = | det I|. Now assume after n row operations we have
Area(P ) = | detE1 . . . En| and consider one more row operation E. From the discussion above,
we immediately get that the area of the changed parallelogram is accounted for by the factor
| detE|, which completes the induction.

37



M.10

Let A,B be m× n and n×m matrices. Prove that Im −AB is invertible if and only if In −BA is
invertible.

Solution.

Proof.
=⇒ : Suppose that Im −AB is invertible, say (Im −AB)−1 = C. Then

(In +BCA)(In −BA) = In −BA+BCA−BCABA

= In −BA+B[C − CAB]A

= In −BA+B[C(Im −AB)]A

= In −BA+B[Im]A

= In −BA+BA = In

Hence (In −BA)−1 = In +BCA.

⇐= : Suppose that In −BA is invertible, say (In −BA)−1 = D. Then

(Im +ADB)(Im −AB) = Im −AB +ADB −ADBAB

= Im −AB +A[D −DBA]B

= Im −AB +A[D(In −BA)]B

= Im −AB +A[In]B

= Im −AB +AB = Im

Hence (Im −AB)−1 = Im +ADB.
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M.11

A function f(u, v) is harmonic if it satisfies the Laplace equation ∂2f
∂u2 + ∂2f

∂v2
= 0. The Dirichlet

problem asks for a harmonic function on a plane region R with prescribed values on the boundary.
This exercise solves the discrete version of the Dirichlet problem.

Let f be a real-valued function whose domain of definition is the set of integers Z. To avoid
asymmetry, the discrete derivative is defined on the shifted integers Z+ 1

2 , as the first difference
f ′(n+ 1

2) = f(n+ 1)− f(n). The discrete second derivative is back on the integers:

f ′′(n) = f ′(n+
1

2
)− f ′(n− 1

2
) = f(n+ 1)− 2f(n) + f(n− 1)

Let f(u, v) be a function whose domain is the lattice of points in the plane with integer coordinates.
The formula for the discrete second derivative shows that the discrete version of the Laplace equation
for f is

f(u+ 1, v) + f(u− 1, v) + f(u, v + 1) + f(u, v − 1)− 4f(u, v) = 0

So f is harmonic if its value at a point (u, v) is the average of the values at its four neighbors.

A discrete region R in the plane is a finite set of integer lattice points. Its boundary ∂R is the set of
lattice points that are not in R, but which are at a distance 1 from some point of R. We’ll call R
the interior of the region R = R∪ ∂R. Suppose that a function β is given on the boundary ∂R. The
discrete Dirichlet problem asks for a function f defined on R that is equal to β on the boundary
and that satisfies the discrete Laplace equation at all points in the interior. This problem leads to a
system of linear equations that we abbreviate as LX = B. To set the system up, we write βuv for
the given value of the function β at a boundary point. So f(u, v) = βuv at a boundary point (u, v).
Let xuv denote the unknown value of the function f(u, v) at a point (u, v) of R. We order the points
of R arbitrarily and assemble the unknowns xuv into a column vector X. The coefficient matrix L
expresses the discrete Laplace equation, except that when a point of R has some neighbors on the
boundary, the corresponding terms will be the given boundary values. These terms are moved to the
other side of the equation to form the vector B.

(a) When R is the set of five points (0, 0), (0,±1), (±1, 0), there are eight boundary points. Write
down the system of linear equations in this case, and solve the Dirichlet problem when β is the
function on ∂R defined by βuv = 0 if v ≤ 0 and βuv = 1 if v > 0.

(b) The maximum principle states that a harmonic function takes on its maximum value on the
boundary. Prove the maximum principle for discrete harmonic functions.

(c) Prove that the discrete Dirichlet problem has a unique solution for every region R and every
boundary function β.
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Solution.

(a) Per the directions above, we order the points of R arbitrarily as

xC = f(0, 0), xN = f(0, 1), xS = f(0,−1), xE = f(1, 0), xW = f(−1, 0)

We can plot these points and the boundary values on the lattice below:

1

11

00

00

0

xC

xN

xS

xExW
x

y

Hence we have Laplace equations:

xW + xE + xN + xS − 4xC = 0

1 + 1 + 1 + xC − 4xN = 0

0 + 0 + xC + 0− 4xS = 0

xC + 0 + 1 + 0− 4xE = 0

0 + xC + 1 + 0− 4xW = 0

=⇒



xW + xE + xN + xS − 4xC = 0

xC − 4xN = −3

xC − 4xS = 0

xC − 4xE = −1

xC − 4xW = −1

which in matrix form LX = B looks like
−4 1 1 1 1
1 −4 0 0 0
1 0 −4 0 0
1 0 0 −4 0
1 0 0 0 −4



xC
xN
xS
xE
xW

 =


0
−3
0
−1
−1


We can solve each equation in terms of xC :

xN =
xC + 3

4
xS =

xC
4

xE =
xC + 1

4
xW =

xC + 1

4

which when plugged back into the first equation gives

0 =
(xC + 1) + (xC + 1) + (xC + 3) + (xC)− 16xC

4
=

5− 12xC
4

=⇒ xC =
5

12

and backsubstituting gives

xN =
41

48
xS =

5

48
xE =

17

48
xW =

17

48
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(b) Proof.
Every value of a harmonic function in the interior of the region is the average of its neighbors,
so the only way for the maximum value to occur in the region is if the function is constant.
Otherwise values that are strictly less than the maximum will contribute to an average value
that is also less than the maximum. In particular, this forces the maximum value to occur
at the boundary.

(c) Proof.
We want to show that LX = B always has a unique solution. It suffices to show for the
case B = 0, i.e. when all boundary values are zero, the only solution is the constant-zero
function. Let f be a harmonic function on our region R. By (b), its maximum value is zero
(since the entire boundary is zero), so f(x) ≤ 0 for all x ∈ R.

For sake of contradiction, assume f is not constant-zero, i.e. there exists x̂ ∈ R
such that f(x̂) < 0. Now note that if we let g = −f , then we have

g(u+ 1, v) + g(u− 1, v) + g(u, v + 1) + g(u, v − 1)− 4g(u, v)

= −[f(u+ 1, v) + f(u− 1, v) + f(u, v + 1) + f(u, v − 1)− 4f(u, v)]

= −[0] (f harmonic)
= 0

Thus g is also harmonic, and for any boundary point b ∈ ∂R we have g(b) = −f(b) = −0 = 0.
Therefore g is also a solution to our system, but now note

g(x̂) = −f(x̂) > 0

thus g does not have a maximum value on the boundary, which is a contradiction. Thus
f(x) = 0 for every x ∈ R and f is the constant zero-function.
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