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§1 - Laws of Composition

1.1

Let S be a set. Prove that the law of composition defined by ab = a for all a and b in S is associative.
For which sets does this have an identity?

Solution.

Proof.
Let a, b, c be elements of S. Then

(ab)c = ac = a and a(bc) = ab = a

Thus (ab)c = a(bc) and the law of composition is associative.

We claim this has an identity if and only if S has one element.

Proof.
⇐= : Suppose S has one element, say S = {e}. Then ee = e, which by definition makes e an
identity on all elements of S.

=⇒ : Suppose S has at least two elements, and assume it has an identity element e.
Then for any a ≠ e in S, we have ea = e and so e is not an identity, which is a contradiction.
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1.2

Prove the properties of inverses that are listed below:

• If an element a has both a left inverse ℓ and a right inverse r, i.e. if ℓa = 1 and ar = 1, then
ℓ = r, a is invertible, and r is its inverse.

• If a is invertible, its inverse is unique.

• Inverses multiply in the opposite order: If a and b are invertible, so is the product ab and
(ab)−1 = b−1a−1.

Solution.

Proof.
(i) Suppose ℓa = ar = 1. Then by definition of an identity element and associativity we have

ℓ = ℓ1 = ℓ(ar) = (ℓa)r = 1r = r

which also means r = ℓ is the inverse of a.

(ii) Suppose that a has two inverses b and c. Then

b = b1 = b(ac) = (ba)c = 1c = c

Thus the inverse of a is unique.

(iii) Let a and b be invertible. Then we have

ab(b−1a−1) = a(bb−1)a−1 = a(1)a−1 = aa−1 = 1

(b−1a−1)ab = b−1(aa−1)b = b−1(1)b = b−1b = 1

}
=⇒ (ab)−1 = b−1a−1
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1.3

Let N denote the set {1, 2, 3, . . . } of natural numbers, and let s : N → N be the shift map, defined
by s(n) = n+ 1. Prove that s has no right inverse, but that it has infinitely many left inverses.

Solution.

Proof.
(i) Suppose there exists a function r : N → N such that s ◦ r is the identity function [s(r(n)) = n
for all n ∈ N]. Note that this implies

1 = s(r(1)) = r(1) + 1

However there is no natural number that equals 1 after being increased by one. Hence r(1) /∈ N,
which is a contradiction.

(ii) Choose k ∈ N and define a map ℓk : N → N by the rule

ℓk(n) =

{
n− 1 if n > 1

k if n = 1

Now note that for any n ∈ N, we have

ℓk(s(n)) = ℓk(n+ 1) = n

so ℓk is a left inverse of s, and there exists an ℓk for every natural number k, therefore s has
infinitely many left inverses.
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§2 – Groups and Subgroups

2.1

Make a multiplication table for the symmetric group S3.

Solution.
Writing x = (123) and y = (12), we have

1 x x2 y xy x2y

1 1 x x2 y xy x2y
x x x2 1 xy x2y y
x2 x2 1 x x2y y xy
y y x2y xy 1 x2y x
xy xy y x2y x 1 x2

x2y x2y xy y x2 x 1

2.2

Let S be a set with an associative law of composition and with an identity element. Prove that the
subset consisting of the invertible elements in S is a group.

Solution.

Proof.
Let S′ be all invertible elements in S. We prove by definition.

• The law of composition is given to be associative.

• The identity element 1 is invertible since 1 · 1 = 1, so 1 ∈ S′.

• Every a ∈ S′ is invertible, so we have aa−1 = a−1a = 1. This also means a−1 is invertible,
so a−1 ∈ S′.

Therefore by definition S′ is a group.
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2.3

Let x, y, z, and w be elements of a group G.

(a) Solve for y, given that xyz−1w = 1.

(b) Suppose that xyz = 1. Does it follow that yzx = 1? Does it follow that yxz = 1?

Solution.

(a) y = x−1w−1z

(b) Yes, yzx = 1 as

yzx = (x−1x)yzx = x−1(xyz)x = x−11x = x−1x = 1

However, yxz = 1 is not necessarily true. If we take our group to be GL2(R) and let

x =

[
1 1
1 2

]
, y =

[
3 1
2 1

]
, z = (xy)−1 =

[
5 2
7 3

]−1

=

[
3 −2
−7 5

]
Then xyz = 1 but

yxz = (yx)z =

[
4 5
3 4

] [
3 −2
−7 5

]
=

[
−23 17
−19 14

]
̸= 1

2.4

In which of the following cases is H a subgroup of G?

(a) G = GLn(C) and H = GLn(R)

(b) G = R× and H = {−1, 1}

(c) G = Z+ and H is the set of positive integers

(d) G = R× and H is the set of positive reals

(e) G = GL2(R) and H is the set of matrices
[
a 0
0 0

]
, with a ̸= 0

Solution.

(a) Yes.

(b) Yes.

(c) No, the identity 0 /∈ H.

(d) Yes.

(e) No, the identity I /∈ H.
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2.5

In the definition of a subgroup, the identity element of H is required to be the identity of G. One
might require only that H have an identity element, not that it need be the same as the identity
in G. Show that if H has an identity at all, then it is the identity in G. Show that the analogous
statement is true for inverses.

Solution.

Proof.
(i) Let 1 be the identity in G and 1′ be an identity in H. In particular, 1′1′ = 1′. However, since
H ⊂ G we also have

1′1 = 1′ = 1′1′

and by the cancellation law we have 1 = 1′.
[To be more precise since the cancellation law depends on the chosen group and identity element,
1′ ∈ H ⊂ G has an inverse in G, i.e. some a ∈ G such that a1′ = 1′a = 1. Then we have
1′ = 11′ = (a1′)1′ = a(1′1′) = a1′ = 1]

(ii) Choose a ∈ H. Let a−1 be the inverse in G and suppose b is an inverse in H.
Then

ab = 1 = aa−1

and by the cancellation law we have b = a−1.

2.6

Let G be a group. Define an opposite group G◦ with law of composition a ∗ b as follows: The
underlying set is the same as G, but the law of composition is a ∗ b = ba. Prove that G◦ is a group.

Solution.

Proof.
We prove by definition.

• Choose a, b, c ∈ G◦. Then since G’s operation is associative we have

(a ∗ b) ∗ c = (ba) ∗ c = c(ba) = (cb)a = a ∗ (cb) = a ∗ (b ∗ c)

Thus ∗ is associative.

• Let 1 ∈ G◦ be the identity element of G. Then for any a ∈ G◦ we have

a ∗ 1 = 1a = a = a1 = 1 ∗ a

Thus 1 is also the identity element of G◦.

• Choose a ∈ G◦ and let a−1 be its inverse in G. Then

a ∗ a−1 = a−1a = 1 = aa−1 = a−1 ∗ a

Thus a−1 is also the inverse of a in G◦.

Therefore by definition G◦ is a group.
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§3 - Subgroups of the Additive Group of Integers

3.1

Let a = 123 and b = 321. Compute d = gcd(a, b), and express d as an integer combination ra+ sb.

Solution.
We do the Euclidean algorithm to get

321 = 2 · 123 + 75

123 = 1 · 75 + 48

75 = 1 · 48 + 27

48 = 1 · 27 + 21

27 = 1 · 21 + 6

21 = 3 · 6 + 3

6 = 2 · 3 + 0

Therefore

gcd(321, 123) = gcd(123, 75) = gcd(75, 48) = gcd(48, 27) = gcd(27, 21) = gcd(21, 6) = gcd(6, 3) = gcd(3, 0) = 3

Now we work backward

75 = 1 · 321− 2 · 123
48 = 123− 75 = 123− (1 · 321− 2 · 123) = −1 · 321 + 3 · 123
27 = 75− 48 = (1 · 321− 2 · 123)− (−1 · 321 + 3 · 123) = 2 · 321− 5 · 123
21 = 48− 27 = (−1 · 321 + 3 · 123)− (2 · 321− 5 · 123) = −3 · 321 + 8 · 123
6 = 27− 21 = (2 · 321− 5 · 123)− (−3 · 321 + 8 · 123) = 5 · 321− 13 · 123

Thus r = −13 and s = 5.

3.2

Prove that if a and b are positive integers whose sum is a prime p, their greatest common divisor is 1.

Solution.

Proof.
Suppose otherwise, i.e. gcd(a, b) = d > 1. Then d divides both a and b, hence d divides a+ b = p.
Since p is prime, this forces d = p. But d ≤ a and d ≤ b since it is a divisor of positive numbers,
so

p = a+ b ≥ d+ d = 2d = 2p =⇒ 1 ≥ 2

which is a contradiction.
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3.3

(a) Define the greatest common divisor of a set {a1, . . . , an} of n integers. Prove that it exists, and
that it is an integer combination of a1, . . . , an.

(b) Prove that if the greatest common divisor of {a1, . . . , an} is d, then the greatest common divisor
of {a1/d, . . . , an/d} is 1.

Solution.

(a) The greatest common divisor of {a1, . . . , an} is the positive integer d where

Zd = Za1 + . . .Zan =

{
n ∈ Z

∣∣∣∣∣ n =
n∑

i=1

riai

}

which we denote d = gcd(a1, . . . , an).
Since {n ∈ Z | n =

∑n
i=1 riai} is a subgroup of Z, by Theorem 2.3.3 it can be written in the

form Zd, so gcd(a1, . . . , an) exists. Furthermore, since d ∈ Zd, we can write it in the form
d = r1a1 + · · ·+ rnan.

(b) Proof.
Let d = gcd(a1, . . . , an). Then since d ∈ Zd = Za1 + · · ·+ Zan, there exists r1, . . . , rn such
that d = r1a1 + · · ·+ rnan. This means that

1 = r1
a1
d

+ · · ·+ rn
an
d

∈ Z
a1
d

+ · · ·+ Z
an
d

In particular, every integer n can be written

n = n(1) = n(r1
a1
d + · · ·+ rn

an
d ) ∈ Z

a1
d

+ · · ·+ Z
an
d

Hence Z ⊂ Za1
d + · · ·+ Zan

d . We always have Za1
d + · · ·+ Zan

d ⊂ Z, so the two groups are
equal and

Z
a1
d

+ · · ·+ Z
an
d

= Z =⇒ gcd(a1/d, . . . , an/d) = 1
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§4 - Cyclic Groups

4.1

Let a and b be elements of a group G. Assume that a has order 7 and that a3b = ba3. Prove that
ab = ba.

Solution.

Proof.
We have

ab = (1)ab = (a14)ab = a3a3a3a3(a3b) = a3a3a3a3(ba3) = a3a3a3(a3b)a3

= a3a3a3ba3a3

= a3a3ba3a3a3

= a3ba3a3a3a3

= ba3a3a3a3a3 = ba(a14) = ba

10



4.2

An nth root of unity is a complex number z such that zn = 1.

(a) Prove that the nth roots of unity form a cyclic subgroup of C× of order n.

(b) Determine the product of all the nth roots of unity

Solution.

(a) Proof.
Let µn = {z ∈ C | zn = 1} be the nth roots of unity. Then we check the subgroup conditions
individually:

• Choosing a, b ∈ µn, note that since complex multiplication is commutative we have

(ab)n = an · bn = 1 · 1 = 1 =⇒ ab ∈ µn

and so µn is closed under multiplication.

• Since 1n = 1, we have the identity 1 ∈ µn.

• Choosing a ∈ µn, we have an inverse a−1 ∈ C×. However, in C we can write

(a−1)n =

(
1

a

)n

=
1n

an
=

1

1
= 1 =⇒ a−1 ∈ µn

Thus µn is closed under inverses.

Therefore µn is a subgroup by definition. By the fundamental theorem of algebra, zn = 1
has at most n distinct solutions, hence the order of µn is at most n. Now define

ζ = ei
2π
n

Note that ζn = ei2π = 1 (e.g. by Euler’s formula) so we have ζ ∈ µn. Furthermore, for any
k = 0, . . . , n− 1 we have

(ζk)n = (ei
2kπ
n )n = ei2πk = 1

and 1 = ζ0, ζ1, . . . , ζn−1 are all distinct complex numbers, so the order of µn is at least n.
Thus µn has order n and furthermore is generated by ζ, therefore it is cyclic.

(b) From (a) we know that

µn = ⟨ζ⟩ = {ζ0, ζ1, . . . , ζn−1} =
{
ei

2kπ
n

∣∣∣ k = 0, . . . , n− 1
}

So the product of all the nth roots of unity is

n−1∏
k=0

ei
2kπ
n = ei

2π0
n ei

2π1
n . . . ei

2π(n−1)
n = e

2πi
n

(0+1+···+(n−1)

= e
2πi
n

· (n−1)n
2

= eπi(n−1)

= enπie−πi = (−1)n(−1) = (−1)n+1
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4.3

Let a and b be elements of a group G. Prove that ab and ba have the same order.

Solution.

Proof.
We first do the case of finite orders. Suppose that ab has finite order, say n. Then

1 = (ab)n = abab . . . ab︸ ︷︷ ︸
n

= b−1 baba . . . ba︸ ︷︷ ︸
n

b = b−1(ba)nb =⇒ (ba)n = baba . . . ba︸ ︷︷ ︸
n

= b1b−1 = 1

Hence ba has order at most n. If ba had an order k less than n, then the symmetric argument to
the one above would show ab has order at most k < n, a contradiction. Thus ba has order n.

Now for infinite orders, suppose that ab has infinite order. If ba had a finite order,
then the argument above would show ab has finite order which is a contradiction. Thus ba also
has infinite order.

4.4

Describe all groups G that contain no proper subgroup.

Solution.
Let G be a group with no proper subgroup. Clearly the trivial group is such a group, so assume
that G is nontrivial and has some element x ≠ 1. Note that G must be cyclic, since otherwise
the cyclic subgroup ⟨x⟩ is a proper subgroup of G. Hence without loss of generality we have
G = ⟨x⟩. G cannot be infinite cyclic since ⟨x2⟩ would be a proper subgroup, therefore x has
finite order, say n. Furthermore, n must be prime since if n = pq for p, q < n then ⟨xp⟩ is a
proper subgroup of order q. Therefore G is a cyclic group of prime order.

4.5

Prove that every subgroup of a cyclic group is cyclic. Do this by working with exponents, and use
the description of the subgroups of Z+.

Solution.

Proof.
Let G = ⟨x⟩ be a cyclic group and let H be a subgroup. In particular every element of H is of
the form xm, so let k be the smallest positive integer such that xk ∈ H. We claim that H = ⟨xk⟩.
Choose y ∈ H. As H ⊂ ⟨x⟩, we can write y = xm for some positive integer m. Now (e.g. by
classification of Z+’s subgroups) there exists q, r ∈ Z such that m = qk + r and 0 ≤ r < k. Note

y = xm = xqk+r = (xk)qxr =⇒ xr = ((xk)q)−1y

But since xk ∈ H, we have under closure that ((xk)q)−1 ∈ H. Thus xr = (xk)−qy ∈ H. But
since r < k and by choice of k as the smallest positive integer where xk ∈ H, this forces r = 0.
Thus y = (xq)k ∈ ⟨xq⟩ and therefore H ⊂ ⟨xk⟩. Clearly the reverse inclusion H ⊃ ⟨xk⟩ also
holds, so the groups are equal.
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4.6

(a) Let G be a cyclic group of order 6. How many of its elements generate G? Answer the same
question for cyclic groups of orders 5 and 8.

(b) Describe the number of elements that generate a cyclic group of arbitrary order n.

Solution.

(a) (i) Let G = {1, x, x2, x3, x4, x5} (without loss of generality). Then we have

⟨1⟩ = {1} ̸= G

⟨x⟩ = {x, x2, x3, x4, x5, x6 = 1} = G

⟨x2⟩ = {x2, x4, x6 = 1} ̸= G

⟨x3⟩ = {x3, x6 = 1} ̸= G

⟨x4⟩ = {x4, x8 = x2, x12 = 1} ̸= G

⟨x5⟩ = {x5, x10 = x4, x15 = x3, x20 = x2, x25 = x, x30 = 1} = G

Hence the elements that generate G are x and x5.
(ii) Let G = {1, y, y2, y3, y4}. Then we have

⟨1⟩ = {1} ̸= G

⟨y⟩ = {y, y2, y3, y4, y5} = G

⟨y2⟩ = {y2, y4, y6 = y, y8 = y3, y10 = 1} = G

⟨y3⟩ = {y3, y6 = y, y9 = y4, y12 = y2, y15 = 1} = G

⟨y4⟩ = {y4, y8 = y3, y12 = y2, y16 = y, y20 = 1} = G

Hence the elements that generate G are y, y2, y3, and y4.
(iii) Let G = {1, z, z2, z3, z4, z5, z6, z7}. By the same process shown above, the elements that
generate G are z, z3, z5, and z7.

(b) We claim that the number of elements that generate a cyclic group of order n is φ(n), where
φ(n) is Euler’s totient function that counts which of 1, 2, . . . , n-1 is relatively prime to n,

φ(n) =
∣∣{k ∈ {1, 2, . . . , n-1} | gcd(k, n) = 1}

∣∣
Proof.
Let G = ⟨x⟩ be a cyclic group of order n. Now suppose that gcd(k, n) = 1. Then we can
find integers r, s such that rk + sn = 1 =⇒ rk = (−s)n+ 1. Now

(xk)r = xrk = x(−s)n+1 = ((xn)s)−1x = (1s)−1x = x =⇒ x ∈ ⟨xk⟩

Conversely, if x ∈ ⟨xk⟩ for some k, then there exists an integer r such that

x = (xk)r = xrk =⇒ xrk−1 = 1 =⇒ rk− 1 = sn =⇒ rk+ (−s)n = 1 =⇒ gcd(k, n) = 1

Combining everything above gives G = ⟨xk⟩ iff ⟨x⟩ ⊂ ⟨xk⟩ iff x ∈ ⟨xk⟩ iff gcd(k, n) = 1.
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4.7

Let x and y be elements of a group G. Assume that each of the elements x, y, and xy has order 2.
Prove that the set H = {1, x, y, xy} is a subgroup of G, and that it has order 4.

Solution.

Proof.
Note that

yx = (xx)yx(yy) = x(xy)(xy)y = xy

which means that

yxy = (yx)y = (xy)y = x(yy) = x and xyx = x(yx) = x(xy) = (xx)y = y

Hence looking at the (induced) multiplication table

1 x y xy

1 1 x y xy
x x 1 xy y
y y xy 1 x
xy xy y x 1

We see that H is closed under multiplication and inverses, as well as has the identity 1, so it is a
subgroup by definition. Finally, each element is distinct since if xy = x, then by the cancellation
law we would have y = 1 which has order 1, a contradiction. Similarly xy = y results in a
contraction. Therefore H has order 4.
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4.8

(a) Prove that the elementary matrices of the first and third types (row-additions and row-scalings)
generate GLn(R).

(b) Prove that the elementary matrices of the first type generate SLn(R). Do the 2× 2 case first.

Solution.

(a) Proof.
Note that since every invertible matrix can be written as the product of elementary matrices
(Theorem 1.2.16), we have that the elementary matrices of the first, second, and third types
generate GLn(R). Hence it suffices to show that every elementary matrix of the second type,
i.e. row-swaps, can be built from row-additions and row-scalings. Indeed, if we want to swap
row i and row j, we can perform the following algorithm:

• Ri 7→ Ri +Rj

• Rj 7→ Rj −Ri

• Rj 7→ −1 ·Rj

• Ri 7→ Ri −Rj

Since now the new R′
i and R′

j become (in terms of the original Ri and Rj)

R′
i = (Ri +Rj)− (−(Rj − (Ri +Rj))) = (Ri +Rj)− (−(−Ri)) = Rj

R′
j = −(Rj − (Ri +Rj)) = −(−Ri) = Ri

Hence for any A ∈ GLn(R), we can write it as the product of elementary matrices, and any
row-swap matrices in the decomposition can be replaced with row-additions and row-scalings.
Thus A can be written as the product of elementary matrices of the first and third types.

(b) Proof.
Choose A ∈ SLn(R). Since SLn ⊂ GLn, by (a) we can write A as a product of row-additions
and row-scalings. However, note the equivalence of row operations

• Ri 7→ Ri + cRj

• Ri 7→ dRi
⇐⇒

• Ri 7→ dRi

• Ri 7→ Ri + (dc)Rj

and
• Ri 7→ Ri + cRj

• Rj 7→ dRj
⇐⇒

• Rj 7→ dRj

• Ri 7→ Ri + ( cd)Rj

and
• Ri 7→ Ri + cRj

• Rk 7→ dRk

⇐⇒
• Rk 7→ dRk

• Ri 7→ Ri +Rj

In particular, this means can do all of our row-scalings first, and then all of our row-additions
to construct A. Hence without loss of generality we can write A = XY , where X is the
product of row-scalings and Y is the product of row-additions. Furthermore,

A ∈ SLn =⇒ 1 = det(A) = det(X) det(Y )
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Since each row-addition has determinant 1, we have det(Y ) = 1, which forces det(X) = 1.
Also, each row-scaling is a diagonal matrix, so X is also a diagonal matrix with entries
d1, . . . , dn. Finally, we have the property of diagonal matrices that det(X) = d1 × · · · × dn.
Hence it suffices to prove the case where A = diag(d1, . . . , dn) where

∏
di = 1.

We first start with n = 2. Then we have

A =

[
d 0
0 1

d

]
We can construct A from I with only row-additions via[
1 0
0 1

]
R2+d(d−1)R1−→

[
1 0

d(d− 1) 1

]
R1+

1
d
R2−→

[
d 1

d
d(d− 1) 1

]
R2−(d−1)R1−→

[
d 1

d
0 1

d

]
R1−R2−→

[
d 0
0 1

d

]
Thus the 2× 2 case is shown. Now more generally for A = diag(d1, . . . , dn), let Ei be the
diagonal n× n matrix where the (i, i) entry is di and the (n, n) entry is 1

di
. Note that since

det(A) = d1d2 . . . dn = 1, we have

E1E2 . . . En−1 = diag(d1, d2, . . . ,
1

d1d2...dn−1
) = diag(d1, d2, . . . , dn) = A

and for each i = 1, . . . , n− 1, the generalized n = 2 case algorithm will construct Ei from I:

• Rn 7→ Rn + di(di − 1)Ri

• Ri 7→ Ri +
1
di
Rn

• Rn 7→ Rn − (di − 1)Ri

• Ri 7→ Ri −Rn

Therefore each Ei is the product of elementary matrices of the first type, hence A can be
written as a product of them as well.
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4.9

How many elements of order 2 does the symmetric group S4 contain?

Solution.
Note that immediately any 3-cycles or 4-cycles (or any permutation σ ∈ S4 with at least one of
them) cannot have order 2. Hence we only want permutations that are transpositions of two
indices, or multiple transpositions that swap pairs of indices independently. In other words, we
want only the product of disjoint 2-cycles in S4, which we can list exhaustively:

(12); (23); (34); (13); (14); (24); (12)(34); (13)(24); (14)(23)

which is nine order-2 elements of S4 in total.

4.10

Show by example that the product of elements of finite order in a group need not have finite order.
What if the group is abelian?

Solution.
In the group GL2(R), consider the following elements

A =

[
0 1
1 0

]
and B =

[
0 0.5
2 0

]
Note that

A2 =

[
0 1
1 0

] [
0 1
1 0

]
=

[
1 0
0 1

]
B2 =

[
0 0.5
2 0

] [
0 0.5
2 0

]
=

[
1 0
0 1

]
Hence A and B have finite order. However,

AB =

[
0 1
1 0

] [
0 0.5
2 0

]
=

[
2 0
0 0.5

]
=⇒ (AB)n =

[
2n 0
0 2−n

]
̸=

[
1 0
0 1

]
∀n ≥ 1

So AB does not have finite order.

Now let G be an abelian group with elements a, b ∈ G with finite orders n and m
respectively. Then since the group is abelian,

(ab)nm = anmbnm = (an)m(bm)n = (1)m(1)n = 1

Thus ab also has finite order.
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4.11

(a) Adapt the method of row reduction to prove that the transpositions generate the symmetric
group Sn.

(b) Prove that, for n ≥ 3, the three-cycles generate the alternating group An.

Solution.

(a) Proof.
Choose a permutation σ ∈ Sn, which has an associated permutation matrix P . By Prop
1.5.10(a), P has a single 1 in each row and column with zeros elsewhere. Thus we can
perform only row-swaps to row reduce P into I (take the row with a 1 in the first column
and swap it with the first row, etc.). Then we can write

I = S1 . . . SmP

Note that for each i we have S−1
i = Si and therefore P = Sk . . . S1. Furthermore, each Si

is the permutation matrix of a transposition τi: If Si swaps rows j and k, then it is the
permutation matrix associated to τi = (jk). Therefore σ = τm . . . τ1 and Sn is generated by
transpositions.

(b) Proof.
Choose an even permutation σ ∈ An. By (a) we can write σ as a product of transpositions.
Furthermore, σ is even, so the number of transpositions is necessarily even. Then write

σ = τ1τ2 . . . τ2k−1τ2k = (τ1τ2) . . . (τ2k−1τ2k)

Therefore by the above grouping, it suffices to show that any product of two transpositions
can be built with 3-cycles. Consider the product (ab)(cd). We consider cases:

• a, b, c, d are all distinct: Then note (acd)(abd) = (ab)(cd), as computing the LHS gives

a 7→ b 7→ b

b 7→ d 7→ a

c 7→ c 7→ d

d 7→ a 7→ c

• a = c, b = d: Then

(ab)(bd) = (ab)(ab) = id = (abx)(abx)(abx)

for some index x ̸= a, b (which exists since n ≥ 3).
• Only b = c: Then (abd) = (ab)(bd) since the RHS gives

a 7→ a 7→ b

b 7→ d 7→ d

d 7→ b 7→ a

Any other case can be reduced to one of three above, as (ab) = (ba) and (cd) = (dc)
[e.g. since (ab)(cd) = (ba)(dc), then we apply the third case if only a = d].
Therefore the three cycles generate An.
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§5 - Homomorphisms

5.1

Let φ : G→ G′ be a surjective homomorphism. Prove that if G is cyclic, then G′ is cyclic, and if G
is abelian, then G′ is abelian.

Solution.

Proof.
(i) Suppose G = ⟨x⟩ is cyclic. We claim G′ = ⟨φ(x)⟩.
Choose a ∈ G′. Since φ is surjective, there exists y ∈ G such that φ(y) = a. However, G = ⟨x⟩
implies there exists n such that y = xn. Therefore

a = φ(y) = φ(xn)
(⋆)
= (φ(x))n ∈ ⟨φ(x)⟩

where (⋆) follows from φ being a homomorphism (specifically Prop 2.5.3(a)). Therefore
G′ = ⟨φ(x)⟩ is cyclic.

(ii) Suppose that G is abelian. Now for any a, b ∈ G′, by surjectivity there exists
x, y ∈ G such that φ(x) = a and φ(y) = b. Since φ is a homomorphism and G is abelian we have

ab = φ(x)φ(y) = φ(xy) = φ(yx) = φ(y)φ(x) = ba

Therefore G′ is abelian.
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5.2

Prove that the intersection K ∩H of subgroups of a group G is a subgroup of H, and that if K is a
normal subgroup of G, then K ∩H is a normal subgroup of H.

Solution.

Proof.
(i) We show K ∩H ≤ H (i.e. is a subgroup of H) by definition:

• For any x, y ∈ K ∩H, since K ≤ G and H ≤ G we have

xy ∈ K and xy ∈ H =⇒ xy ∈ K ∩H

Thus we have closure in K ∩H.

• Since the identity 1 ∈ K and 1 ∈ H, we have 1 ∈ K ∩H.

• Choose x ∈ K ∩H. Then its inverse x−1 ∈ G is necessarily in K and H since K,H ≤ G.
Thus x−1 ∈ K ∩H.

Therefore K ∩H ≤ H.

(ii) Suppose K ◁G (i.e. is a normal subgroup of G).
Choose x ∈ K ∩H. For any h ∈ H, note that:

• Since x ∈ K ◁G and H ≤ G, we have h ∈ G and by definition of normal subgroup
hxh−1 ∈ K

• Since x ∈ H and H ≤ G, we have by closure of H that hxh−1 ∈ H

Therefore hxh−1 ∈ K ∩H and thus K ∩H ◁H.
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5.3

Let U denote the group of invertible upper triangular 2×2 matrices A =

[
a b
0 d

]
, and let φ : U → R×

be the map that sends A ⇝ a2. Prove that φ is a homomorphism, and determine its kernel and
image.

Solution.

Proof.
Choose A,B ∈ U , where

A =

[
a b
0 d

]
and X =

[
x y
0 z

]
=⇒ AX =

[
ax ay + bz
0 dz

]
Then we have

φ(AX) = (ax)2 = a2x2 = φ(A)φ(X)

and therefore φ is a homomorphism.

We also have that

kerφ = {A ∈ U | φ(A) = 1} =

{[
±1 b
0 d

] ∣∣∣∣ d ̸= 0

}

imφ =

{
a ∈ R×

∣∣∣∣ [√a b
0 d

]
∈ U

}
= (0,∞) ⊂ R

5.4

Let f : R+ → C× be the map f(x) = eix. Prove that f is a homomorphism, and determine its kernel
and image.

Solution.

Proof.
Choose x, y ∈ R+. Then

f(x)f(y) = eixeiy = ei(x+y) = f(x+ y)

Thus f is a homomorphism.

We also have that

ker f = {x ∈ R+ | 1 = eix} = {x ∈ R+ | x = 0,±2π,±4π, . . . } = Z2π

imφ = {z ∈ C× | |z| = 1} = complex plane unit circle
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5.5

Prove that the n× n matrices that have the block form M =

[
A B
0 D

]
, with A in GLr(R) and D in

GLn−r(R), form a subgroup H of GLn(R), and that the map H → GLr(R) that sends M ⇝ A is a
homomorphism. What is its kernel?

Solution.

Proof.
First note that by block matrix multiplication we have[

A B
0 D

] [
X Y
0 Z

]
=

[
AX +B0 AY +BZ
0X +D0 0Y +DZ

]
=

[
AX AY +BZ
0 DZ

]
Now we show H ≤ GLn(R) by definition:

• Choose
[
A B
0 D

]
,

[
X Y
0 Z

]
∈ H. For the product to also be in H, we need AX ∈ GLr(R)

and DZ ∈ GLn−r(R). But this is ensured by the closure of GLr(R) and GLn−r(R).

• We have n× n identity in block form

In =

[
Ir 0
0 In−r

]
∈ H

• Choose
[
A B
0 D

]
∈ H. Then it has inverse

[
A B
0 D

]−1

=

[
A−1 A−1(−BD−1)
0 D−1

]
∈ H

Next, let φ :M 7→ A be the map defined above. Then

φ

([
A B
0 D

] [
X Y
0 Z

])
= φ

([
AX AY +BZ
0 DZ

])
= AX = φ

([
A B
0 D

])
φ

([
X Y
0 Z

])
So φ is a homomorphism. Finally, it has kernel

kerφ =

{[
Ir B
0 D

] ∣∣∣∣ D ∈ GLn−r(R)
}
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5.6

Determine the center of GLn(R).
Hint: You are asked to determine the invertible matrices A that commute with every invertible
matrix B. Do not test with a general matrix B. Test with elementary matrices.

Solution.
We claim the center of GLn(R), which we denote Z(GLn(R)), is all scalar multiples of I, which
we denote ZI.

Proof.
First, choose a matrix A ∈ ZI. Note that we can write A = dI for some nonzero d. Now for any
invertible matrix B ∈ GLn(R) we have BA = AB = dB since both matrices multiply every
entry in B by d. Thus ZI ⊂ Z(GLn(Z)).

Now choose a matrix A ∈ Z(GLn(R)). Then A commutes with all invertible matrices,
so in particular it commutes with all elementary matrices. We specifically will look at the
row-additions, letting Erc correspond to the row operation of adding row c to row r (r ≠ c). We
use r and c since we can write this using a unit matrix: Erc = I + erc, where erc has a 1 at row
r and column c. Since A is in the center, we have

ErcA = AErc =⇒ (I + erc)A = A(I + erc) =⇒ A+ ercA = A+Aerc =⇒ ercA = Aerc

From Exercise 1.1.15 (or thinking about the row operation Erc), we have that ercA takes the
cth row of A and puts it at the rth row with zeros elsewhere; Aerc takes the rth column of A
and puts it at the cth column with zeros elsewhere. The above states that every entry of these
two matrices will match for any value of r and c, i.e.

(Aerc)ij = (ercA)ij for all r, c, i, j = 1, . . . , n, r ̸= c (⋆)

We consider cases:

• i ≠ r, j ≠ c: Then we have (Aerc)ij = 0 since we are not looking at the cth column.
Similarly, (ercA)ij = 0 since we are not looking at the rth row. Thus all (⋆) says is that
0 = 0.

• i = r, j ≠ c: Then again we have (Aerc)ij = 0. However, we are now looking at the rth
row of (ercA) which is the cth row of A. Therefore as we change value of j to move along
that row, (⋆) says that every off-diagonal entry in the cth row of A is zero. However, an
invertible matrix cannot have a row of all zeros, so this also means that the entry Acc is
nonzero.

• i = r, j = c: Then (Aerc)ij is the entry Arr and (ercA)ij is entry Acc. Thus (⋆) tells us
that Acc = Arr.

Therefore as we change the values of r and c, the last two points tell us the following: the
offdiagonal entries of A are zero and the diagonal entries of A are the same nonzero number d.
Hence A = dI ∈ ZI and Z(GLn(R)) ⊂ ZI.

[As a side note, see Schur’s lemma (Section 10.7)]
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§6 - Isomorphisms

6.1

Let G′ be the group of real matrices of the form
[
1 x

1

]
. Is the map R+ → G′ that sends x to this

matrix an isomorphism?

Solution.
We claim yes.

Proof.

Let φ : R+ → G′ be the map x 7→
[
1 x
0 1

]
. Clearly the map ψ :

[
1 y
0 1

]
7→ y is the inverse of φ,

so it suffices to show φ is a homomorphism. Indeed, we have

φ(x)φ(y) =

[
1 x
0 1

] [
1 y
0 1

]
=

[
1 x+ y
0 1

]
= φ(x+ y)

Therefore φ is an isomorphism.

6.2

Describe all homomorphisms φ : Z+ → Z+. Determine which are injective, which are surjective, and
which are isomorphisms.

Solution.
Since Z+ = ⟨1⟩, any homomorphism φ is determined by where it sends 1. To elaborate, for any
n ∈ Z we have

φ(n) = φ(1 + · · ·+ 1︸ ︷︷ ︸
n

) = φ(1) + · · ·+ φ(1)︸ ︷︷ ︸
n

= n(φ(1))

We thus consider cases:

• φ(1) = 1: Then φ(n) = n is the identity function and is an isomorphism.

• φ(1) = 0: Then φ(n) = 0 is the trivial homomorphism, neither surjective nor injective.

• φ(1) = −1: Then φ(n) = −n is injective (φ(n) = −n = 0 ⇐⇒ n = 0) and surjective (for
any n ∈ Z, φ(−n) = n), thus it is an isomorphism.

• φ(1) = k ̸= −1, 0, 1: Then φ(n) = kn, which is injective (φ(n) = kn = 0 ⇐⇒ n = 0) but
not surjective (φ(n) = kn ̸= 1 for all n ∈ Z).

This exhausts all possible cases.
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6.3

Show that the functions f = 1/x, g = (x−1)/x generate a group of functions, the law of composition
being composition of functions, that is isomorphic to the symmetric group S3.

Solution.

Proof.
Function composition is a law of composition, and we have the identity function via f :

f2(x) = (f ◦ f)(x) = 1
1
x

= x = id(x)

For inverses, it suffices to show each generator has an inverse. We just demonstrated that
f−1 = f , and we also have

g3(x) = (g ◦ g ◦ g)(x) = 1− 1

1− 1
1− 1

x

= 1− 1
x−1
x−1 − x

x−1

= 1− 1
−1
x−1

= 1 + (x− 1) = x

Thus g−1 = g2 and we have a group G = ⟨f, g⟩. To create an isomorphism to S3, we map
generators to generators of the same order. (12) and (123) generate S3, so define our map

φ : G→ S3, φ(f) = (12), φ(g) = (123)

Note that in G we have the formula fg = g2f as

(f ◦ g)(x) = f(x−1
x ) =

x

x− 1
=

−x
1− x

(g ◦ g ◦ f)(x) = g(g( 1x)) = g(1− 1
1/x) = g(1− x) =

(1− x)− 1

1− x
=

−x
1− x

Therefore G has generators f and g with relations f2 = g3 = 1 and fg = g2f , which are the
defining properties of the symmetric group S3 so we have G ∼= S3.

6.4

Prove that in a group, the products ab and ba are conjugate elements.

Solution.

Proof.
We have

aba = aba =⇒ ab = a(ba)a−1

Thus ab and ba are conjugate.
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6.5

Decide whether or not the two matrices A =

[
3

2

]
and B =

[
1 1
−2 4

]
are conjugate elements of

the general linear group GL2(R).

Solution.
We claim yes.
We want to find a matrix X such that AX ⋆

= XB. Hence we would like[
3 0
0 2

] [
a b
c d

]
=

[
3a 3b
2c 2d

]
⋆
=

[
a b
c d

] [
1 1
−2 4

]
=

[
a− 2b a+ 4b
c− 2d c+ 4d

]
Then we have the system 

3a = a− 2b

3b = a+ 4b

2c = c− 2d

2d = c+ 4d

=⇒

{
a = −b
c = −2d

So we can choose any such values that also satisfy ad− bc ≠ 0 to ensure X ∈ GL2(R). We take
a = 1, b = −1, c = 2, d = −1. Then we have

X =

[
1 −1
2 −1

]
and X−1 =

[
−1 1
−2 1

]
and indeed

XBX−1 =

[
1 −1
2 −1

] [
1 1
−2 4

] [
−1 1
−2 1

]
=

[
3 −3
4 −2

] [
−1 1
−2 1

]
=

[
3 0
0 2

]
= A
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6.6

Are the matrices
[
1 1

1

]
,

[
1
1 1

]
conjugate elements of the group GL2(R)? Are they conjugate

elements of SL2(R)?

Solution.

Yes, they are conjugate in GL2(R). Let A =

[
1 1

1

]
, B =

[
1
1 1

]
.

We then want to find a matrix X such that AX ⋆
= XB. Hence we would like[

1 1
0 1

] [
a b
c d

]
=

[
a+ c b+ d
c d

]
⋆
=

[
a b
c d

] [
1 0
1 1

]
=

[
a+ b b
c+ d d

]
Then we have the system 

a+ c = a+ b

b+ d = b

c = c+ d

d = d

=⇒

{
c = b

d = 0

So we can choose any such values that also satisfy ad− bc ≠ 0 to ensure X ∈ GL2(R). We take
a = 0, b = 1, c = 1, d = 0. Then we have

X =

[
0 1
1 0

]
and X−1 =

[
0 1
1 0

]
= X

and indeed

XBX−1 =

[
0 1
1 0

] [
1 0
1 1

] [
0 1
1 0

]
=

[
1 1
1 0

] [
0 1
1 0

]
=

[
1 1
0 1

]
= A

However, they are not conjugate in SL2(R). To see this, suppose that there exists a matrix

Y =

[
a b
c d

]
∈ SL2(R) such that A = Y BY −1. But the above system must hold, so we have

b = c and d = 0. Then since Y ∈ SL2(R) we have

1 = det(Y ) = ad− bc = −b2

which implies b = ±
√
−1 /∈ R, a contradiction. Thus such a Y does not exist and A,B are not

conjugate in SL2(R).
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6.7

Let H be a subgroup of G, and let g be a fixed element of G. The conjugate subgroup gHg−1 is
defined to be the set of all conjugates ghg−1, with h ∈ H. Prove that gHg−1 is a subgroup of G.

Solution.

Proof.
We prove gHg−1 ≤ G by definition:

• Choose gh1g−1, gh2g
−1 ∈ gHg−1. Then we have

(gh1g
−1)(gh2g

−1) = gh1(gg
−1)h2g

−1 = g(h1h2)g
−1 ∈ gHg−1

since the closure of H ≤ G implies h1h2 ∈ H.

• Since H ≤ G we have the identity 1 ∈ H. Thus

1 = gg−1 = g1g−1 ∈ gHg−1

• Choose ghg−1 ∈ gHg−1. It has inverse

(ghg−1)−1 = (g−1)−1h−1g−1 = gh−1g−1 ∈ gHg−1

since the closure of H ≤ G implies h−1 ∈ H.

Therefore gHg−1 ≤ G.

Another (slicker) proof:

Proof.
Note that the “conjugate by g” map

cg : H → G, h 7→ ghg−1

is a homomorphism:

cg(h1)cg(h2) = (gh1g
−1)(gh2g

−1) = gh1(g
−1g)h2g

−1 = g(h1h2)g
−1 = cg(h1h2)

Then gHg−1 = cg(H) is the image of a homomorphism and so is a subgroup of the codomain
G.
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6.8

Prove that the map A⇝ (At)−1 is an automorphism of GLn(R).

Solution.

Proof.
Let φ : GLn(R) → GLn(R) be the described map. First note (e.g. from Exercise 1.3.1) that
(At)−1 = (A−1)t. Hence

φ(φ(A)) = ([φ(A)]t)−1 = ([(A−1)t]t)−1 = (A−1)−1 = A

and φ is its own inverse. In particular, it is invertible. Furthermore,

φ(A)φ(B) = (At)−1(Bt)−1 = (BtAt)−1 = ((AB)t)−1 = φ(AB)

Hence φ is also a homomorphism, therefore it is an isomorphism.

6.9

Prove that a group G and its opposite group G◦ (Exercise 2.6) are isomorphic.

Solution.

Proof.
For reference, G◦ has the same underlying set as G with group operation a ∗ b = ba. Define

φ : G→ G◦, a 7→ a−1

Then we have for any a, b ∈ G

φ(ab) = (ab)−1 = b−1a−1 = φ(b)φ(a) = φ(a) ∗ φ(b)

Thus φ is a homomorphism. Furthermore it is clearly also invertible [ψ : G◦ → G,ψ(b) = b−1 is
the inverse, which is not exactly φ]. Therefore φ is an isomorphism and G ∼= G◦.
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6.10

Find all automorphisms of

(a) a cyclic group of order 10.

(b) the symmetric group S3.

Solution.

(a) Let G = ⟨x⟩ = {1, x, . . . , x9} be a cyclic group of order 10 and let φ : G → G be an
automorphism. Note that φ is completely determined by where it sends x, and since it is
an isomorphism it must send x to a generator of G. From Exercise 4.6 we have that G is
generated by the following elements: x, x3, x7, x9. Hence we have four automorphisms

φ1 : x 7→ x φ2 : x 7→ x3 φ3 : x 7→ x7 φ4 : x 7→ x9

(b) Since S3 = ⟨(12), (123)⟩, any automorphism ψ : S3 → S3 is completely determined by where
it sends the generators. Furthermore, as an isomorphism ψ(σ) must preserve the order of σ.
In particular, ψ((12)) must have order 2 and ψ((123)) must have order 3. Hence there are
three possible values of ψ((12)) and two possible values of ψ((123)), leaving at most six
possible automorphisms.

However, S3 has six elements and for each permutation σ ∈ S3 we have the “conju-
gate by σ” automorphism cσ : S3 → S3, cσ(τ) = στσ−1. Furthermore, each of these
automorphisms are distinct since if cσ1 = cσ2 , then in particular we have for any τ ∈ S3 that

cσ1(τ) = cσ2(τ) =⇒ σ1τσ
−1
1 = σ2τσ

−1
2 =⇒ σ−1

2 σ1τ = τσ−1
2 σ1 =⇒ σ−1

2 σ1 ∈ Z(S3)

However, Z(S3) = {id} (e.g. by examining the multiplication table in Exercise 2.1) and thus
σ−1
2 σ1 = id =⇒ σ1 = σ2. Therefore cσ1 = cσ2 if and only if σ1 = σ2, so we have six distinct

automorphisms which must be all of them by the upper bound shown above. Explicitly,

ψ1 : σ 7→ σ ψ2 : σ 7→ (12)σ(12) ψ3 : σ 7→ (13)σ(13)

ψ4 : σ 7→ (23)σ(23) ψ5 : σ 7→ (123)σ(132) ψ6 : σ 7→ (132)σ(123)
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6.11

Let a be an element of a group G. Prove that if the set {1, a} is a normal subgroup of G, then a is
in the center of G.

Solution.

Proof.
Suppose {1, a}◁G. By definition for any g ∈ G we have gag−1 ∈ {1, a}. However, if there exists
g′ such that g′ag′−1 = 1, then

g′ag′−1 = 1 =⇒ g′a = g′ =⇒ a = 1

and clearly 1 ∈ Z(G). Otherwise, we have for all g ∈ G that

gag−1 = a =⇒ ga = ag =⇒ a ∈ Z(G)
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§7 - Equivalence Relations and Partitions

7.1

Let G be a group. Prove that the relation a ∼ b if b = gag−1 for some g in G is an equivalence
relation on G.

Solution.

Proof.
We check each axiom:

• Suppose a ∼ b and b ∼ c. Then there exists g1, g2 ∈ G such that b = g1ag
−1
1 and c = g2bg

−1
2 .

Then
c = g2bg

−1
2 = g2(g1ag

−1
1 )g−1

2 = (g2g1)a(g2g1)
−1 =⇒ a ∼ c

• Suppose that a ∼ b. Then there exists g ∈ G such that b = gag−1. This implies

a = g−1ag = g−1a(g−1)−1 =⇒ b ∼ a

• Choose a ∈ G. Then
a = 1a1 = 1a1−1 =⇒ a ∼ a

Therefore ∼ is an equivalence relation.

7.2

An equivalence relation on S is determined by the subset R of the set S ×S consisting of those pairs
(a, b) such that a ∼ b. Write the axioms for an equivalence relation in terms of the subset R.

Solution.
We can write our axioms as follows:

• Transitivity: If (a, b) ∈ R and (b, c) ∈ R, then (a, c) ∈ R.

• Symmetry: If (a, b) ∈ R, then (b, a) ∈ R.

• Reflexivity: For every a ∈ S, (a, a) ∈ R.
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7.3

With the notation of Exercise 7.2, is the intersection R ∩R′ of two equivalence relations R and R′

an equivalence relation? Is the union?

Solution.
We claim R ∩R′ is an equivalence relation. We check each axiom:

• Suppose (a, b), (b, c) ∈ R ∩R′. Then

(a, b), (b, c) ∈ R =⇒ (a, c) ∈ R

and similarly for R′. Thus (a, c) ∈ R ∩R′.

• Suppose (a, b) ∈ R ∩R′. Then

(a, b) ∈ R =⇒ (b, a) ∈ R

and similarly for R′. Thus (b, a) ∈ R ∩R′.

• We have for every a ∈ S that (a, a) ∈ R and (a, a) ∈ R′. Thus (a, a) ∈ R∩R′ for all a ∈ S.

Therefore R ∩R′ is an equivalence relation.

However, R ∪R′ is not necessarily an equivalence relation. Consider the following:
Let S = {a, b, c} and set

R = {(a, a), (b, b), (c, c), (a, b), (b, a)} R′ = {(a, a), (b, b), (c, c), (b, c), (c, b)}

Then both are equivalence relations and we have

R ∪R′ = {(a, a), (b, b), (c, c), (a, b), (b, a), (b, c), (c, b)}

Now (a, b) ∈ R ∪ R′ and (b, c) ∈ R ∪ R′ but (a, c) /∈ R ∪ R′, so transitivity fails and R ∪ R′ is
not an equivalence relation.
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7.4

A relation R on the set of real numbers can be thought of as a subset of the (x, y)-plane. With the
notation of Exercise 7.2, explain the geometric meaning of the reflexive and symmetric properties.

Solution.
Thinking of R as a subset of R2, the reflexive property tells us that the entire line y = x will
be in our subset. The symmetric property tells us that our subset is symmetric across this line
y = x: If a point (a, b) is in our subset, then so is the point (b, a).

7.5

With the notation of Exercise 7.2, each of the following subsets R of the (x, y)-plane defines a relation
on the set R of real numbers. Determine which of the axioms are satisfied:

(a) The set {(s, s) | s ∈ R}

(b) The empty set

(c) The locus {xy + 1 = 0}

(d) The locus {x2y − xy2 − x+ y = 0}

Solution.

(a) • Transitivity: Holds, since (a, b), (b, c) ∈ R forces a = b = c and so (a, c) = (a, a) ∈ R.

• Symmetry: Holds, since (a, b) ∈ R forces b = a and so (b, a) = (a, a) ∈ R.

• Reflexivity: Holds, since for every s ∈ R we have by construction (s, s) ∈ R.

(b) • Transitivity: Holds, vacuously.

• Symmetry: Holds, vacuously.

• Reflexivity: Fails, since (1, 1) /∈ R.

(c) • Transitivity: Fails, since (1,−1) ∈ R and (−1, 1) ∈ R but (1, 1) /∈ R.

• Symmetry: Holds, since if ab+ 1 = 0, then ba+ 1 = 0.

• Reflexivity: Fails, since (1, 1) /∈ R.

(d) • Transitivity: Holds. Note that we can write

x2y − xy2 − x+ y = xy(x− y)− 1(x− y) = (xy − 1)(x− y)

Then if (ab− 1)(a− b) = (bc− 1)(b− c) = 0, then either a = b =⇒ (ac− 1)(a− c) = 0,
or a = 1

b , which combined with b = c or b = 1
c gives (ac− 1)(a− c) = 0.

• Symmetry: Holds, since if x2y − xy2 − x+ y = 0, then

y2x− yx2 − y + x = −(−y2x+ yx2 + y − x) = −(x2y − xy2 − x+ y) = −0 = 0

• Reflexivity: Holds, since x = y implies

x2y − xy2 − x+ y = y3 − y3 − y + y = 0
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7.6

How many different equivalence relations can be defined on a set of five elements?

Solution.
Let S = {a, b, c, d, e}. By Prop 2.7.4, equivalence relations and partitions of S are the same, so
we look at the number of ways to partition S, where we go by “bin sizes”:

• 1 + 1 + 1 + 1 + 1: There is only one such partition.

• 2 + 1 + 1 + 1: There are
(
5
2

)
= 10 ways to break down S like so.

• 2 + 2 + 1: There are 1
2(
(
5
2

)
·
(
3
2

)
) = 15 such partitions.

• 3 + 1 + 1: There are
(
5
3

)
= 10 such partitions.

• 3 + 2: There are
(
5
3

)
= 10 such partitions.

• 4 + 1: There are
(
5
4

)
= 5 such partitions.

• 5: There is only one such partition.

In total, this gives 1 + 10 + 15 + 10 + 10 + 5 + 1 = 52 different partitions of S.
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§8 - Cosets

8.1

Let H be the cyclic subgroup of A4 generated by the permutation (123). Exhibit the left and right
cosets of H explicitly.

Solution.
We can write out all of A4 in cycle notation:

A4 = {id, (123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23)}

and we have the subgroup H = ⟨(123)⟩ = {id, (123), (132)}.
Note that |A4| = 1

2(4!) = 12 and |H| = 3. Therefore we have [A4 : H] = 12/3 = 4 cosets.
The four left cosets are:

1. {id, (123), (132)} = idH = (123)H = (132)H

2. {(124), (14)(23), (134)} = (124)H = (14)(23)H = (134)H

3. {(142), (234), (13)(24)} = (142)H = (234)H = (13)(24)H

4. {(143), (12)(34), (243)} = (143)H = (12)(34)H = (243)H

The four right cosets are:

1. {id, (123), (132)} = H id = H(123) = H(132)

2. {(124), (13)(24), (243)} = H(124) = H(13)(24) = H(243)

3. {(142), (143), (14)(23)} = H(142) = H(143) = H(14)(23)

4. {(134), (234), (12)(34)} = H(134) = H(234) = H(12)(34)

8.2

In the additive group Rm of vectors, let W be the set of solutions of a system of homogeneous linear
equations AX = 0. Show that the set of solutions of an inhomogeneous system AX = B is either
empty, or else it is an (additive) coset of W .

Solution.

Proof.
Let S ⊂ Rm be the solution set to AX = B, and suppose that S ̸= ∅. Then there exists x̄ ∈ Rm

such that Ax̄ = B. We claim that S =W + x̄.
Choose w + x̄ ∈W + x̄. Then we have Aw = 0 which implies

A(w + x̄) = Aw +Ax̄ = 0 +B = B =⇒ w + x̄ ∈ S =⇒ W + x̄ ⊂ S

Now choose s ∈ S. Note that

A(s−x̄) = As−Ax̄ = B−B = 0 =⇒ (s−x̄) ∈W =⇒ s = (s−x̄)+x̄ ∈W+x̄ =⇒ S ⊂W+x̄

Therefore S =W + x̄ is a coset of W .
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8.3

Does every group whose order is a power of a prime p contain an element of order p?

Solution.
We claim yes.

Proof.
Let G be a group of order pn. We use strong induction on n.
Base: n = 1. Then by Corollary 2.8.11, G is cyclic and any generator a has order |G| = p.
IH: Assume any group of order pk (k < n) has an element of order p. Choose an element a ∈ G
that is not the identity. Then consider the subgroup ⟨a⟩ ≤ G. We consider cases:

• a does not generate G: Then the order of a divides pn but is not equal to it, thus it has
order pk for k < n. Then by IH ⟨a⟩ has an element b of order p, which is also an element
of G.

• G = ⟨a⟩: Then set k = pn−1 and b = ak. We claim b has order p. Note that since k = pn−1,
it is not the order of a so b = ak ̸= 1. Furthermore, the order of b must divide pn, and

bp = (ak)p = akp = ap
n
= 1

which is the smallest (̸= 1) divisor of pn, so it must be the order of b.

Therefore in both cases we can find an element b ∈ G with order p.
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8.4

Does a group of order 35 contain an element of order 5? of order 7?

Solution.
We claim yes, both elements always exist.

Proof.
Take a group G of order 35. If G = ⟨x⟩ is cyclic, then x7 has order 5 and x5 has order 7.
Otherwise, assume that G is not cyclic, i.e. has no element of order 35. Choose a nonidentity
element x ∈ G. By assumption ⟨x⟩ ≠ G, but the order of x must divide 35 = 5 · 7, so it is either
order 5 or 7. Consider cases:

• |⟨x⟩| = 5: Suppose that G has no elements of order 7. In particular this means that
every nonidentity element has order 5. Furthermore, for any nonidentity y ∈ G, note that
⟨x⟩ ∩ ⟨y⟩ is a subgroup of ⟨x⟩ (see Exercise 5.2). Since 5 is prime, by Lagrange either
⟨x⟩∩ ⟨y⟩ = {1} or ⟨x⟩ = ⟨y⟩. In the first case, the elements y, y2, y3, y4 are all distinct from
those in ⟨x⟩. However, since every nonidentity element of G has order 5, we can write G
as the union of these cyclic subgroups of order 5, say n of them, by taking y from G \ ⟨x⟩,
then z from G \ (⟨x⟩ ∪ ⟨y⟩), and so on. Then we have

G = {1} ∪ ⟨y1⟩ ∪ ⟨y2⟩ ∪ · · · ∪ ⟨yn⟩, where ⟨yi⟩ ∩ ⟨yj⟩ = {1} (i ̸= j)

But since each of these cyclic subgroups have 4 distinct elements, this implies that
35 = |G| = 1 + 4n, which implies n = 34/4 /∈ Z and is a contradiction. Thus G has an
element of order 7.

• |⟨x⟩| = 7: Again, suppose that G has no elements of order 5. The same argument above
applies, where we have

G = {1} ∪ ⟨y1⟩ ∪ ⟨y2⟩ ∪ · · · ∪ ⟨yn⟩, where ⟨yi⟩ ∩ ⟨yj⟩ = {1} (i ̸= j)

but with the change that each ⟨yi⟩ will now contribute 6 distinct elements. Therefore we
have 35 = 1 + 6n, which forces n to be a non-integer and is a contradiction. Thus G has
an element of order 5.

Therefore G has elements of order 5 and 7.
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8.5

A finite group contains an element x of order 10 and also an element y of order 6. What can be said
about the order of G?

Solution.
Let |G| = n. By Lagrange we immediately have 6 and 10 both divide n. Therefore their least
common multiple lcm(6, 10) = 30 also divides n. Hence n = 30k for some positive integer k.
This necessary condition is also a sufficient condition, since for every cyclic group G = ⟨g⟩ of
order 30k, the elements x = g3k and y = g5k have orders 10 and 6 respectively.

8.6

Let φ : G→ G′ be a group homomorphism. Suppose that |G| = 18, |G′| = 15, and that φ is not the
trivial homomorphism. What is the order of the kernel?

Solution.
We immediately have | imφ| ≠ 1 since φ is not trivial. From Corollary 2.8.13, we know that
18 = |G| = | kerφ| · | imφ| and that | imφ| divides |G′| = 15. In particular,

| imφ|
∣∣ 18 = 2 · 32 and | imφ|

∣∣ 15 = 3 · 5 =⇒ | imφ| = 3

Therefore
| kerφ| = |G|

| imφ|
=

18

3
= 6

8.7

A group G of order 22 contains elements x and y, where x ≠ 1 and y is not a power of x. Prove that
the subgroup generated by these elements is the whole group G.

Solution.

Proof.
Let H = ⟨x, y⟩ ≤ G and I = ⟨x⟩ ≤ H. By assumption we have I,H ≠ {1} (since x ≠ 1) and
H ̸= I (since y ̸= xk). In particular, we have

{1} ⊊ I ⊊ H ⊆ G (⋆)

By Lagrange, we have that |I| divides |G| = 22 = 2 · 11 and (⋆) says that |I| ̸= 1 and |I| ̸= 22.
We consider cases

• |I| = 2: Now since H is a subgroup of G, it has order that divides 22. However, since
H ≠ I we have |H| ≠ 2 and since 2 = |I| must divide |H| we also have |H| ≠ 11. Therefore
|H| = 22.

• |I| = 11: Since I ⊊ H, we have 11 = |I| < |H|. The only possible value of |H| (= 2, 11, 22
from Lagrange) that satisfies this is |H| = 22.

In both cases, H has order 22 which forces ⟨x, y⟩ = H = G.
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8.8

Let G be a group of order 25. Prove that G has at least one subgroup of order 5, and that if it
contains only one subgroup of order 5, then it is a cyclic group.

Solution.

Proof.
By Exercise 8.3 we have G has an element x of order 5, so G has a subgroup ⟨x⟩ of order 5.

Now suppose that ⟨x⟩ ≤ G is the only subgroup of order 5. Then choose a noniden-
tity element y ∈ G \ ⟨x⟩. The order of y must divide |G| = 25, but it cannot have order 5 since
⟨y⟩ would be another subgroup of order 5. This forces y to have order 25, in which case it
generates all of G and G = ⟨y⟩ is cyclic.

8.9

Let G be a finite group. Under what circumstances is the map φ : G→ G defined by φ(x) = x2 an
automorphism of G?

Solution.
We first check when φ is a homomorphism:

φ(x)φ(y) = φ(xy) ⇐⇒ xxyy = xyxy ⇐⇒ xy = yx

so we need G to be abelian. Next,

φ(x) = 1 ⇐⇒ x2 = 1

So for φ to be injective we need G to not have an element of order 2, which is equivalent to
saying that G does not have an even order (see Exercise M.2). Finally, since G is a finite group
we have φ injective =⇒ φ surjective.

Therefore φ is an automorphism if and only if G is an abelian group with odd order.
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8.10

Prove that every subgroup of index 2 is a normal subgroup, and show by example that a subgroup
of index 3 need not be normal.

Solution.

Proof.
Let G be a group and H ≤ G be a subgroup of index 2, which by definition means that H has
two cosets. For any g ∈ G, we have the cosets gH and Hg. We consider cases:

• g ∈ H: Then gH = H = Hg.

• g /∈ H: Then gH ≠ H and Hg ≠ H. But since H only has two cosets and one is H itself,
this forces gH = Hg.

Therefore in both cases we have gH = Hg =⇒ gHg−1 = H =⇒ H ◁G.

For a counterexample for index 3, let G = S3 and H = {id, (12)}. Note that

[G : H] =
|G|
|H|

=
6

2
= 3

so H has index 3, but it is not a normal subgroup since

(123)(12)(123)−1 = (123)(12)(132) = (123)(13) = (23) /∈ H
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8.11

Let G and H be the following subgroups of GL2(R):

G =

{[
x y
0 1

]}
, H =

{[
x 0
0 1

]}
,

with x and y real and x > 0. An element of G can be represented by a point in the right half plane.
Make sketches showing the partitions of the half plane into left cosets and into right cosets of H.

Solution.
We have left cosets: [

x y
0 1

] [
a 0
0 1

]
=

[
ax y
0 1

]
∈
[
x y
0 1

]
H

which as we vary elements of H, i.e. the value of a > 0, we are keeping y constant and so the
coset becomes a horizontal line.
We also have right cosets: [

a 0
0 1

] [
x y
0 1

]
=

[
ax ay
0 1

]
∈ H

[
x y
0 1

]
which as we vary the value of a, the coset becomes a line from the origin through (x, y).
We sketch a few of these cosets in orange and red below:

x

y

[
x y
0 1

]
H

(x, y)

O

Left cosets: horizontal lines

x

y

H

[
x y
0 1

]
(x, y)

H (positive x-axis)
O

Right cosets: rays from the origin
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8.12

Let S be a subset of a group G that contains the identity element 1, and such that the left cosets
aS, with a in G, partition G. Prove that S is a subgroup of G.

Solution.

Proof.
We show by definition:

• Choose s1, s2 ∈ S. Then we have s1 ∈ G, s2 ∈ S and so s1s2 is in the left coset s1S.
However, since s1 ∈ S, we have that s1S = S. Thus s1s2 ∈ S and we have closure.

• It is given that the identity 1 is in S.

• Choose s ∈ S. Then the inverse s−1 exists in G, and so 1 = s−1s ∈ s−1S. However, since
1 ∈ S and the cosets partition G, this means that s−1S = S. Thus s−1 ∈ S are we are
closed under inverses.

Therefore by definition S ≤ G.
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8.13

Let S be a set with a law of composition. A partition Π1 ∪Π2 ∪ . . . of S is compatible with the law
of composition if for all i and j, the product set

ΠiΠj = {xy | x ∈ Πi, y ∈ Πj}

is contained in a single subset Πk of the partition.

(a) The set Z of integers can be partitioned into three sets [Pos], [Neg], [{0}]. Discuss the extent to
which the laws of composition + and × are compatible with this partition.

(b) Describe all partitions of the integers that are compatible with the operation +.

Solution.

(a) First, we look at addition +. Our “products” are really additions, so we use the notation
Πi +Πj . Note that [Pos] + [Neg] is not contained in only one subset, since 1 + (−2) ∈ [Neg]
and 2 + (−1) ∈ [Pos], so the partition is not compatible with +.
Next, we look at multiplication ×. We look at (pairwise, as × is commutative) products:

• [Pos][Neg] is all products of a positive number with a negative number, which is
always negative so [Pos][Neg] ⊂ [Neg]

• [Neg][Neg] is all products of a negative number with a negative number, which is
always positive so [Neg][Neg] ⊂ [Pos]

• [Pos][Pos] ⊂ [Pos]
• Clearly [Pos][{0}], [Neg][{0}], and [{0}][{0}] are all contained in [{0}]

Therefore × is compatible with this partition.

(b) Suppose Π1,Π2, . . . is a partition compatible with addition, i.e. for each i and integer a,
there exists some j such that

x ∈ Πi =⇒ (x+ a) ∈ Πj

In other words, adding any integer a translates the entire subset Πi into another subset.
We can apply this translation invariance when we repeatedly add 1 to a some integer x, as
this new integer moves to another subset. If the partition has only finitely many subsets,
eventually x, x+ 1, x+ 2, . . . must end back in a previously-visited subset, say after n steps.
Then x+ n is in the same Πi as x. However by translation invariance, the same must be
true for every integer, so the partition groups together all integers that differ by multiples of
n, which is simply congruence modulo n.

Another possibility is that if the partition has infinitely many Πi’s, then this wrap-
around never occurs, and adding 1 keeps sending integers to different subsets, which is only
possible if each subset contains a single integer. Finally, it is possible that adding 1 always
remains in the same subset, in which case the partition is simply all of Z. Therefore all
partitions of Z compatible with + are:

• Π = Z
• Πi = {i} for all i ∈ Z
• Πi = {x ∈ Z | x ≡ i mod n} for i = 0, . . . , n− 1.
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§9 - Modular Arithmetic

9.1

For which integers n does 2 have a multiplicative inverse in Z/Zn?

Solution.
We want to solve 2x ≡ 1 mod n. Equivalently, we want to find k ∈ Z such that 2x+ nk = 1.
This is true if and only if gcd(2, n) = 1 (Corollary 2.3.6), which is true if and only if n is odd.

9.2

What are the possible values of a2 modulo 4? modulo 8?

Solution.
It suffices to only look at values of a modulo 4 and 8:
(i): Modulo 4, we have

02 ≡ 0, 12 ≡ 1, 22 ≡ 0, 32 ≡ 1

Hence the possible values are 0 and 1.
(ii): Modulo 8, we have

02 ≡ 0, 12 ≡ 1, 22 ≡ 4, 32 ≡ 1, 42 ≡ 0, 52 ≡ 1, 62 ≡ 4, 72 ≡ 1

Hence the possible values are 0, 1, and 4.

9.3

Prove that every integer a is congruent to the sum of its decimal digits modulo 9.

Solution.

Proof.
Writing our integer a digit-by-digit, we have

a = dn · 10n + · · ·+ d1 · 10 + d0

since 10 ≡ 1 mod 9, we have

a ≡ dn · 1n + · · ·+ d1 · 1 + d0 ≡ dn + · · ·+ d1 + d0 mod 9

which is exactly the sum of its digits.

45



9.4

Solve the congruence 2x ≡ 5 modulo 9 and modulo 6.

Solution.
(i) We have the table

x 0 1 2 3 4 5 6 7 8
2x mod 9 0 2 4 6 8 1 3 5 7

Hence the only solution is x = 7.

(ii) We have the table
x 0 1 2 3 4 5

2x mod 6 0 2 4 0 2 4

Hence we have no solutions.

9.5

Determine the integers n for which the pair of congruences 2x− y ≡ 1 and 4x+ 3y ≡ 2 modulo n
has a solution.

Solution.
Note that

2x− y ≡ 1 ⇐⇒ 6x− 3y ≡ 3 ⇐⇒ −4x+ 2y ≡ −2 mod n

Hence adding these last two congruences to 4x+ 3y ≡ 2 gives the system{
10x ≡ 5 mod n

5y ≡ 0 mod n

Note that if n is even, then the first congruence has no solution (if it did, then there exists k
such that 10x+ nk = 5, but the LHS is even and RHS is odd). By Exercise 9.1, if n is odd there
exists x such that

2x ≡ 1 mod n =⇒ 10x ≡ 5 mod n

Hence the first congruence has a solution if and only if n is odd. The second congruence will
always have a solution, namely y = n. Therefore the pair of congruences has a solution if and
only if n is odd.

46



9.6

Prove the Chinese Remainder Theorem: Let a, b, u, v be integers, and assume that the greatest
common divisor of a and b is 1. Then there is an integer x such that x ≡ u modulo a and x ≡ v
modulo b.
Hint: Do the case u = 0 and v = 1 first.

Solution.

Proof.
Suppose that u = 0 and v = 1. Since gcd(a, b) = 1, there exists integers r and s such that
ra+ sb = 1. Now set x = ra. Then{

x = ra =⇒ x ≡ 0 mod a

x = 1− sb =⇒ x ≡ 1 mod b

Hence we have our desired x.

Now suppose u and v are arbitrary integers.
By the argument above, there exists integers x1 and x2 such that{

x1 ≡ 0 mod a

x1 ≡ 1 mod b
and

{
x2 ≡ 1 mod a

x2 ≡ 0 mod b

Now set x = ux2 + vx1. Then working modulo a we have

x ≡ u · 1 + v · 0 ≡ u

and working modulo b we have
x ≡ u · 0 + v · 1 ≡ v

Hence we have our desired x.
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9.7

Determine the order of each of the matrices A =

[
1 1
0 1

]
and B =

[
1 1
1 0

]
when the matrix entries

are interpreted modulo 3.

Solution.
We have, working modulo 3,

A ≡
[
1 1
0 1

]
, A2 ≡

[
1 2
0 1

]
, A3 ≡

[
1 3
0 1

]
≡

[
1 0
0 1

]
Hence A has order 3.

Next, we have modulo 3

B ≡
[
1 1
1 0

]
, B2 ≡

[
2 1
1 1

]
, B3 ≡

[
3 2
2 1

]
≡

[
0 2
2 1

]
, B4 ≡

[
2 0
3 2

]
≡

[
2 0
0 2

]
, B5 ≡

[
2 2
2 0

]

B6 ≡
[
4 2
2 2

]
≡

[
1 2
2 2

]
, B7 ≡

[
3 1
4 2

]
≡

[
0 1
1 2

]
, B8 ≡

[
1 0
3 1

]
≡

[
1 0
0 1

]
Hence B has order 8.
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§10 - The Correspondence Theorem

10.1

Describe how to tell from the cycle decomposition whether a permutation is odd or even.

Solution.
A permutation is odd if and only if its cycle decomposition has an odd number of even-length
cycles. This is because a cycle of length n can be written as n− 1 transpositions, so every even-
length cycle can be written as an odd number of transpositions and each additional even-length
cycle will flip the parity.
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10.2

Let H and K be subgroups of a group G.

(a) Prove that the intersection xH ∩ yK of two cosets of H and K is either empty or else is a coset
of the subgroup H ∩K.

(b) Prove that if H and K have finite index in G then H ∩K also has finite index in G.

Solution.

(a) Proof.
Suppose that xH∩yK is not empty (otherwise we are done). Then we can choose an element
g from it and can write g = xh0 = yk0. We claim that xH ∩ yK = g(H ∩K).

• Choose z ∈ xH ∩ yK. Then we can write z = xh = yk. However, x = gh−1
0 and

y = gk−1
0 , so we have

z = xh = g(h−1
0 h) and z = yk = g(k−1

0 k)

Thus setting h1 = h−1
0 h ∈ H, k1 = k−1

0 k ∈ K we have

gh1 = z = gk1 =⇒ h1 = k1 ∈ H ∩K =⇒ z ∈ g(H ∩K)

thus xH ∩ yK ⊂ g(H ∩K).
• Choose gj ∈ g(H ∩K). Then

j ∈ H =⇒ h0j ∈ H =⇒ gj = (xh0)j = x(h0j) ∈ xH

and
j ∈ K =⇒ k0j ∈ K =⇒ gj = (yk0)j = y(k0j) ∈ yK

Thus gj ∈ xH ∩ yK and g(H ∩K) ⊂ xH ∩ yK.

Therefore xH ∩ yK is a coset of H ∩K.

(b) Proof.
Since cosets partition G, let X,Y ⊂ G be sets such that |X| = [G : H], |Y | = [G : K], and

G =
⋃
x∈X

xH =
⋃
y∈Y

yK

In particular, this means that for every g ∈ G there exists xi ∈ X and yj ∈ Y such that
g ∈ xiH and g ∈ yjK, i.e. g ∈ xiH ∩ yjK. Thus the union of the xiH ∩ yjK’s covers G:

G =
⋃

xi∈X,yj∈Y
xiH ∩ yjK

From (a), each xiH ∩ yjK is either empty or a coset of H ∩K, and since we cover all of G
all cosets are present. Furthermore, there are at most |X| · |Y | cosets here, which is finite
since |X| and |Y | are both finite by assumption. Therefore by definition

[G : H ∩K] ≤ |X| · |Y | <∞
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10.3

Let G and G′ be cyclic groups of order 12 and 6, generated by elements x and y, respectively, and
let φ : G → G′ be the map defined by φ(xi) = yi. Exhibit the correspondence referred to in the
Correspondence Theorem explicitly.

Solution.
Note that K = kerφ = {1, x6}. The subgroups of G that contain K are corresponded with:

G = ⟨x⟩↭ ⟨y⟩ = G′

⟨x2⟩↭ ⟨y2⟩
⟨x3⟩↭ ⟨y3⟩

K = ⟨x6⟩↭ ⟨1⟩ = {1}

and as expected, the subgroups of G′ are corresponded with:

{1}↭ φ−1({1}) = K

⟨y3⟩↭ φ−1({1, y3}) = {1, x3, x6, x9} = ⟨x3⟩
⟨y2⟩↭ φ−1({1, y2, y4}) = {1, x2, x4, x6, x8, x10} = ⟨x2⟩

G′ = ⟨y⟩↭ φ−1(G′) = ⟨x⟩ = G
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10.4

With the notation of the Correspondence Theorem, let H and H ′ be corresponding subgroups. Prove
that [G : H] = [G′ : H ′].

Solution.

Proof.
Let φ : G → G′ be a surjective homomorphism and H ≤ G,H ′ ≤ G′ be subgroups that
correspond, i.e. H ′ = φ(H) and H = φ−1(H). We claim that the map ψ that sends a coset gH
to φ(g)H ′ is a bijection.

• First, we need to check that ψ is well-defined on cosets. If g1H = g2H, then we have
g−1
2 g1H = H =⇒ g−1

2 g1 ∈ H. Then we have φ(g−1
2 g1) ∈ φ(H) = H ′, so

φ(g−1
2 g1)H

′ = H ′ =⇒ φ(g2)
−1φ(g1)H

′ = H ′ =⇒ φ(g1)H
′ = φ(g2)H

′ =⇒ ψ(g1) = ψ(g2)

Thus ψ is well-defined.

• Note that for any coset g′H ′, since φ is surjective there exists g ∈ G such that φ(g) = g′,
and so ψ(gH) = g′H ′ and ψ is surjective.

• Suppose that ψ(g1) = ψ(g2). Then we have

φ(g1)H
′ = φ(g2)H

′ =⇒ H ′ = φ(g2)
−1φ(g1)H

′ = φ(g−1
2 g1)H

′ =⇒ φ(g−1
2 g1) ∈ H ′

which implies (see the bullet points (2.8.5)) that

g−1
2 g1 ∈ φ−1(H ′) = H =⇒ g1 ∈ g2H =⇒ g1H = g2H

Thus ψ is injective.

Therefore we have a bijection between the cosets of H and the cosets of H ′, so in particular we
have [G : H] = [G′ : H ′].
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10.5

With reference to the homomorphism S4 → S3 described in Example 2.5.13, determine the six
subgroups of S4 that contain K.

Solution.
By the Correspondence Theorem, we can start with the six subgroups of S3 and take the inverse
image of each. For reference, we have partitions of {1, 2, 3, 4}

Π1 = {1, 2} ∪ {3, 4}, Π2 = {1, 3} ∪ {2, 4}, Π3 = {1, 4} ∪ {2, 3}

and our map φ sends a permutation σ of S4 to the permutation of the set {Π1,Π2,Π3} (which
we then think of as an element of S3) that corresponds to how σ acts on the 2-element subsets
of {1, 2, 3, 4}. We also have

K = kerφ = {id, (12)(34), (13)(24), (14)(23)}

We now go through each subgroup of S3:

1. S3: Since φ is surjective, we have φ−1(S3) = S4.

2. {id}: By definition of kernel, we have φ−1({id}) = K.

3. {id, (12)}: We now want to find all σ ∈ S4 that act as the transposition (Π1Π2) and fixes Π3.
These are σ = (23), σ = (14), as well as σ = (1243) and σ = (1342). Thus we have

φ−1({id, (12)}) = φ−1({id}) ∪ φ−1({(12)}) = K ∪ {(23), (14), (1243), (1342)}

4. {id, (13)}: Similarly, we want to swap Π1 and Π3 while fixing Π2, which is achieved by
σ = (24), σ = (13) and σ = (1234), σ = (1432). Thus we have

φ−1({id, (13)}) = K ∪ {(24), (13), (1234), (1432)}

5. {id, (23)}: This is achieved with σ = (34), σ = (12) and σ = (1324), σ = (1423). Thus

φ−1({id, (23)}) = K ∪ {(34), (12), (1324), (1423)}

6. {id, (123), (132)}: Now we want to find permutations that leave no Πi fixed. Breaking it up,
we have

φ−1({(123)}) = {(234), (143), (124), (132)}

and
φ−1({(132)}) = {(243), (134), (142), (123)}

Thus

φ−1({id, (123), (132)}) = K ∪ {(234), (143), (124), (132)} ∪ {(243), (134), (142), (123)}

which is exactly the alternating group A4.

This gives all subgroups of S4 containing K.
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§11 - Product Groups

11.1

Let x be an element of order r of a group G, and let y be an element of G′ of order s. What is the
order of (x, y) in the product group G×G′?

Solution.
We claim the order of (x, y) is ℓ := lcm(r, s).

Proof.
Since ℓ is a multiple of r, we have xℓ = 1 and since ℓ is a multiple of s, we have that yℓ = 1.
Thus

(x, y)ℓ = (xℓ, yℓ) = (1, 1) = 1 ∈ G×G′

and so the order of (x, y) is at most ℓ. Next note that

(x, y)k = 1 =⇒ (xk, yk) = (1, 1) =⇒

{
xk = 1

yk = 1
=⇒

{
k = n1r

k = n2s

Thus k is a multiple of r and s, so by definition we have k ≥ ℓ and that the order of (x, y) is at
least ℓ.
Therefore the order of (x, y) is ℓ.

11.2

What does Proposition 2.11.4 tell us when, with the usual notation for the symmetric group S3, K
and H are the subgroups ⟨y⟩ and ⟨x⟩?

Solution.
For reference, we have x = (123) and y = (12) and f : H ×K → S3 is the multiplication map
f(xi, yj) = xiyj . Note that

• H ∩K = ⟨x⟩ ∩ ⟨y⟩ = {1}.

• The elements of K do not commute with elements of H, since yx = x2y ̸= xy.

• H has index 2, so it is a normal subgroup of S3 (see Exercise 8.10).

• However, K is not a normal subgroup, as xyx−1 = x2y /∈ K.

Therefore the first point lets us apply Prop 2.11.4(a) to say that f is injective; the second point
lets us apply Prop 2.11.4(b) to say that f is not a homomorphism; the third point lets us apply
Prop 2.11.4(c) to say that HK ≤ G; the fourth point lets us apply Prop 2.11.4(d) to say that f
is not an isomorphism.
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11.3

Prove that the product of two infinite cyclic groups is not infinite cyclic.

Solution.

Proof.
Let G = ⟨x⟩ and H = ⟨y⟩ be two infinite cyclic groups, and suppose otherwise, i.e. the product
is infinite cyclic, i.e. G ×H = ⟨z⟩. Then we can write z = (g, h) for some g ∈ G and h ∈ H.
This implies that there exists m,n such that{

(x, 1) = zm = (gm, hm)

(1, y) = zn = (gn, hn)
=⇒

{
gm = x

gn = 1

In particular, x having infinite order means that 1 ̸= xk = (gm)k for all k. However, for k = n we
have that (gm)n = (gn)m = 1m = 1, which is a contradiction and G×H is not infinite cyclic.
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11.4

In each of the following cases, determine whether or not G is isomorphic to the the product group
H ×K.

(a) G = R×, H = {±1}, K = {positive real numbers}

(b) G = {invertible upper triangular 2× 2 matrices}, H = {invertible diagonal matrices}, K =
{upper triangular matrices with diagonal entries 1}

(c) G = C×, H = {unit circle}, K = {positive real numbers}

Solution.

(a) Yes, G ∼= H ×K. We can decompose any nonzero real number into sign and magnitude via

φ : G→ H ×K, x 7→ ( x
|x| , |x|)

Since |x||y| = |xy|, we have that

φ(x)φ(y) = ( x
|x| , |x|)(

y
|y| , |y|) = ( x

|x|
y
|y| , |x||y|) = ( xy

|xy| , |xy|) = φ(xy)

and φ is a homomorphism. It is also clearly invertible, with inverse ψ(±1, y) = ±y. Hence
φ is an isomorphism.

Another way to show this is that ψ defined above is exactly the multiplication
map, with H ∩ K = {1}, ψ surjective, and H,K ◁G (since G is abelian). So by Prop
2.11.4(d) we have G ∼= H ×K.

(b) No, G ̸∼= H ×K. Consider the map

ψ : H ×K → G,

([
d1 0
0 d2

]
,

[
1 b′

0 1

])
7→

[
d1 0
0 d2

] [
1 b′

0 1

]
=

[
d1 d1b

′

0 d2

]
Next note that H is not normal in G, as[

1 2
0 1

] [
1 0
0 2

] [
1 2
0 1

]−1

=

[
1 4
0 2

] [
1 −2
0 1

]
=

[
1 2
0 2

]
/∈ H

Hence by Prop 2.11.4(d) we have that ψ is not an isomorphism.

(c) Yes, G ∼= H ×K. Consider the map

ψ : H ×K → G, (eiθ, r) 7→ reiθ

Note that
H ∩K = {z ∈ C | |z| = 1} ∩ {x ∈ R | r > 0} = {1}

and that ψ is surjective (as it is simply polar coordinates), and that since G is abelian we
have H,K ◁G. Therefore by Prop 2.11.4(d) we have ψ is an isomorphism.
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11.5

Let G1 and G2 be groups, and let Zi be the center of Gi. Prove that the center of the product group
G1 ×G2 is Z1 × Z2.

Solution.

Proof.
Choose an element (z1, z2) ∈ Z1 × Z2. Then for any (g1, g2) ∈ G1 × G2, since z1 ∈ Z1 and
z2 ∈ Z2 we have

(g1, g2)(z1, z2) = (g1z1, g2z2) = (z1g1, z2g2) = (z1, z2)(g1, g2) =⇒ (z1, z2) ∈ Z(G1 ×G2)

Hence Z1 × Z2 ⊂ Z(G1 ×G2).
Now choose (h, h′) ∈ Z(G1, G2). Then for any g1 ∈ G1, we have

(h, h′)(g1, 1) = (g1, 1)(h, h
′) =⇒ (hg1, h

′) = (g1h, h
′) =⇒ hg1 = g1h

Hence h ∈ Z1. A symmetric argument shows that h′ ∈ Z2. Thus we have (h, h′) ∈ Z1 × Z2 and
so Z(G1 ×G2) ⊂ Z1 × Z2. Therefore Z(G1 ×G2) = Z1 × Z2.

11.6

Let G be a group that contains normal subgroups of orders 3 and 5, respectively. Prove that G
contains an element of order 15.

Solution.

Proof.
Let H ◁G be a normal subgroup of order 3 and K ◁G be a normal subgroup of order 5. Since
3 and 5 are prime we have that H and K are both cyclic (Corollary 2.8.11), so write H = ⟨h⟩
and K = ⟨k⟩. Now define the map

φ : H ×K → G, (hi, kj) 7→ hikj

By Prop 2.11.4(c) we have that H ◁G =⇒ HK ≤ G. Now take the map

ψ : H ×K → HK, ψ(hi, kj) = φ(hi, kj)

Note that H ∩K = {1} since every nonidentity element of H has order 3 and every nonidentity
element of K has order 5. Also by construction we have ψ surjective. Finally, since H and
K are normal in G and HK is a subgroup of G, we have that H and K are normal in HK.
Therefore by Prop 2.11.4(d) we have H ×K ∼= HK.

Next note that since H and K are cyclic with relatively prime orders, by Prop 2.11.3
we have that the product H ×K is isomorphic to a cyclic group ⟨x⟩ of order 15. But note that

⟨x⟩ ∼= H ×K ∼= HK ≤ G

So HK must also have an element of order 15, and this element is necessarily in G.
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11.7

Let H be a subgroup of a group G, let φ : G→ H be a homomorphism whose restriction to H is
the identity map, and let N be its kernel. What can one say about the product map H ×N → G?

Solution.
Let ψ : H ×N → G be the product map (h, n) 7→ hn. Note that

H ∩N = H ∩ {g ∈ G | φ(g) = 1} = {h ∈ H | 1 = φ|H(h) = idH(h) = h} = {1}

Hence by Prop 2.11.4(a) we have ψ is injective. Futhermore since the kernel is always a normal
subgroup we have that N ◁G and by Prop 2.11.4(c) we have that its image is a subgroup of G.
However, ψ is not necessarily a homomorphism since elements of H and K do not necessarily
commute.

11.8

Let G,G′, and H be groups. Establish a bijective correspondence between homomorphisms Φ : H →
G×G′ from H to the product group and pairs (φ,φ′) consisting of a homomorphism φ : H → G
and a homomorphism φ′ : H → G′.

Solution.
First recall the inclusion and projection maps

G G

G×G′

G′ G′

i p

p′i′

Now given a homomorphism Φ : H → G×G′, we can define the corresponding homomorphisms

φ : H → G, h 7→ p(Φ(h)) = (p ◦ Φ)(h) φ′ : H → G′, h 7→ p′(Φ(h)) = (p′ ◦ Φ)(h)

Conversely, given two homomorphisms φ : H → G and φ′ : H → G′, we define the corresponding
homomorphism

Φ : H → G×G′, h 7→ i(φ(h))i′(φ′(h)) = (φ(h), φ′(h))
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11.9

Let H and K be subgroups of a group G. Prove that the product set HK is a subgroup of G if and
only if HK = KH.

Solution.

Proof.
=⇒ : Suppose that HK ≤ G. Choose elements h ∈ H and k ∈ K.
Then hk ∈ HK and by closure of inverses, we have (hk)−1 ∈ HK, so there exists h′ ∈ H and
k′ ∈ K such that (hk)−1 = h′k′. Now note

hk = ((hk)−1)−1 = (h′k′)−1 = k′−1h−1 ∈ KH

Thus HK ⊂ KH.
Furthermore, we have (kh)−1 = h−1k−1 ∈ HK, so by closure of inverses we have
kh = ((kh)−1)−1 ∈ HK, which implies HK ⊂ HK. Therefore HK = KH.

⇐= : Suppose that HK = KH. We show HK ≤ G by definition, borrowing arguments from
the proof of Prop 2.11.4(c):

• Closure follows from (HK)(HK) = H(KH)K = H(HK)K = (HH)(KK) = HK.

• Since 1 in H and 1 ∈ K, then 1 = (1)(1) ∈ HK and we have the identity.

• Given hk ∈ HK, we have (hk)−1 = k−1h−1 ∈ KH = HK, so inverses are closed.

Therefore by definition HK ≤ G.
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§12 - Quotient Groups

12.1

Show that if a subgroup H of a group G is not normal, there are left cosets aH and bH whose
product is not a coset.

Solution.
Take G = S3 = ⟨x, y⟩ and H = ⟨y⟩ for x = (123) and y = (12). Note that H is not normal
(xyx−1 = x2y /∈ H) and consider the cosets

(xy)H = {xy, x} and (x2y)H = {x2y, x2}

Now
(xy)H(x2y)H = {xyx2y, xyx2, xx2y, xx2} = {x2, x2y, y, 1}

which is not a coset, since it has 4 elements.
In fact, we claim we can always find such cosets aH and bH as long as H ≤ G is not normal.

Proof.
We prove the contrapositive: If for a subgroup H ≤ G, every product of cosets is a coset, then
H is normal.
Let H be such a group. Then for any g ∈ G, we have that (gH)(g−1H) = aH for some a ∈ G.
However, the identity

1 = (g−11)(g1) ∈ (gH)(g−1H) = aH

so we have (gH)(g−1H) = H. This means that for any h ∈ H, there exists h′ such that

ghg−1h−1 = h′ =⇒ ghg−1 = h′h ∈ H =⇒ gHg−1 = H

Therefore H ◁G.
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12.2

In the general linear group GL3(R), consider the subsets

H =

1 ∗ ∗
0 1 ∗
0 0 1

 , and K =

1 0 ∗
0 1 0
0 0 1


where ∗ represents an arbitrary real number. Show that H is a subgroup of GL3(R), that K is a
normal subgroup of H, and identify the quotient group H/K. Determine the center of H.

Solution.
Let U ≤ GL3(R) be the subgroup of upper-triangular matrices and define a map

ψ : U → R× × R× ×R×,

a ∗ ∗
0 b ∗
0 0 c

 7→ (a, b, c)

This is a homomorphism since for A =

a11 a12 a13
0 a22 a23
0 0 a33

, B =

b11 b12 b13
0 b22 b23
0 0 b33

 ∈ U ,

ψ (AB) = ψ

a11b11 a11b12 + a12b22 a11b13 + a12b23 + a13b33
0 a22b22 a22b23 + a23b33
0 0 a33b33


= (a11b11, a22b22, a33b33)

= (a11, a22, a33)(b11, b22, b33)

= ψ (A)ψ (B)

and thus H = kerψ ≤ U ≤ GL3(R) is a subgroup.

Next, define a map

φ : H → R+ × R+,

1 a b
0 1 c
0 0 1

 7→ (a, c)

This is also a homomorphism since for A =

1 a12 a13
0 1 a23
0 0 1

, B =

1 b12 b13
0 1 b23
0 0 1

 ∈ H,

φ (AB) = φ

1 b12 + a12 b13 + a12b23 + a13
0 1 b23 + a23
0 0 1


= (b12 + a12, b23 + a23)

= (a12, a23) + (b12, b23)

= φ (A)φ (B)

and thus K = kerφ◁H is a normal subgroup.
By the first isomorphism theorem, H/K ∼= imφ = R+ × R+, since φ is clearly surjective.
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Finally, for the center of H note that for A,B ∈ H we have

AB =

1 b12 + a12 b13 + a12b23 + a13
0 1 b23 + a23
0 0 1

 and BA =

1 a12 + b12 a13 + b12a23 + b13
0 1 a23 + b23
0 0 1


thus

AB = BA ⇐⇒ a12b23 = b12a23 (⋆)

If we suppose B ∈ Z(H) and vary A ∈ H, then (⋆) holding for every possible A can occur if and
only if b12 = b23 = 0, which holds if and only if B ∈ K. Therefore Z(H) = K.

12.3

Let P be a partition of a group G with the property that for any pair of elements A,B of the
partition, the product set AB is contained entirely within another element C of the partition. Let
N be the element of P that contains 1. Prove that N is a normal subgroup of G and that P is the
set of its cosets.

Solution.

Proof.
First, we check that N is a subgroup of G. For any n1, n2 ∈ N , we have n1n2 ∈ NN which
by assumption is contained in some element C of the partition. However, taking n1 = n2 = 1
means that 1 ∈ C, which by definition of partition forces C = N . Thus NN ⊂ N and we are
closed under multiplication. Furthermore, for any n ∈ N , say its inverse n−1 exists in A ∈ P .
Then 1 = nn−1 ∈ NA ⊂ C ′ forces C ′ = N . But now n−1 = 1n−1 ∈ NA ⊂ N , so N is closed
under inverses as well. Finally, N contains the identity, so by definition N ≤ G.

Now choose g ∈ G. Then there exists an element C of the partition such that (gN)(g−1N) ⊂ C.
Now for any n ∈ N ,

gng−1 = (gn)(g−11) ∈ (gN)(g−1N) ⊂ C

However taking n = 1 means that g(1)g−1 = 1 ∈ C, so we have C = N . Therefore gng−1 ∈ N
and N is normal.

Finally, choose g ∈ G and let A be the element of the partition that contains g. We
have for any n ∈ N that gn ∈ AN ⊂ C for some C, but taking n = 1 gives g ∈ C =⇒ C = A.
Thus gN ⊂ A. Furthermore, let B be the element of the partition that contains g−1. Then
AB ⊂ C ′ for some C ′, but 1 = gg−1 ∈ AB forces C ′ = N . Thus AB ⊂ N , and in particular for
every a ∈ A we have ag−1 ∈ N which implies a ∈ gN , so we have A ⊂ gN . Therefore gN = A,
so the elements of P and cosets of N coincide.
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12.4

Let H = {±1,±i} be the subgroup of G = C× of fourth roots of unity. Describe the cosets of H in
G explicitly. Is G/H isomorphic to G?

Solution.
Given z = x+ iy ∈ C, we have the coset

zH = {±(x+ iy),±(ix+ i2y)} = {±(x+ iy),±(−y + ix)}

which are the rotations of z by 0, π/2, π, and 3π/2 about the origin.

Next take the map
φ : G→ G, z 7→ z4

Note that this map is a homomorphism since multiplication is commutative, so

φ(z1)φ(z2) = z41z
4
2 = (z1z2)

4 = φ(z1z2)
4

Furthermore, it is surjective since for any reiθ ∈ G, we have

φ( 4
√
reiθ/4) = ( 4

√
reiθ/4)4 = (( 4

√
r)4e4·iθ/4) = reiθ

Finally, we have
kerφ = {z ∈ G | z4 = 1} = H

Therefore by the first isomorphism theorem we have G/H ∼= imφ = G.
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12.5

Let G be the group of upper triangular real matrices
[
a b
0 d

]
, with a and d different from zero. For

each of the following subsets, determine whether or not S is a subgroup, and whether or not S is a
normal subgroup. If S is a normal subgroup, identify the quotient subgroup G/S.

(i) S is the subset defined by b = 0.

(ii) S is the subset defined by d = 1.

(iii) S is the subset defined by a = d.

Solution.

(i) We claim S is a subgroup, but not normal.
First note that I ∈ S, and that[

a1 0
0 d1

] [
a2 0
0 d2

]
=

[
a1a2 0
0 d1d2

]
∈ S

So it is closed under multiplication. Finally,[
a 0
0 d

]−1

=

[
1
a 0
0 1

d

]
∈ S

so S is closed under inverses, therefore S ≤ G. However,[
1 1
0 1

] [
2 0
0 1

] [
1 1
0 1

]−1

=

[
2 1
0 1

] [
1 −1
0 1

]
=

[
2 −1
0 1

]
/∈ S

so S is not normal.

(ii) We claim that S is normal. Take the map

φ : G→ R×,

[
a b
0 d

]
7→ d

This is a homomorphism since for A =

[
a b
0 d

]
, B =

[
x y
0 z

]
∈ G we have

φ(AB) = φ

([
ax ay + bz
0 dz

])
= dz = φ(A)φ(B)

Furthermore,

kerφ =

{[
a b
0 d

]
∈ G

∣∣∣∣ d = 1

}
= S

Therefore S is a normal subgroup of G.
Finally, as φ is clearly surjective we have by the first isomorphism theorem that G/S ∼= R×.
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(iii) We claim S is normal. Take the map

φ : G→ R×,

[
a b
0 d

]
7→ a

d

This is a homomorphism since for A =

[
a b
0 d

]
, B =

[
x y
0 z

]
∈ G we have

φ(AB) = φ

([
ax ay + bz
0 dz

])
=
ax

dz
=
a

d
· x
z
= φ(A)φ(B)

Furthermore,

kerφ =

{[
a b
0 d

]
∈ G

∣∣∣∣ ad = 1 ⇐⇒ a = d

}
= S

Therefore S is a normal subgroup of G.
Finally, as φ is clearly surjective we have by the first isomorphism theorem that G/S ∼= R×.
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Miscellaneous Problems

M.1

Describe the column vectors (a, c)t that occur as the first column of an integer matrix A whose
inverse is also an integer matrix.

Solution.

Let A =

[
a b
c d

]
. Since A−1 by assumption has integer entries, by Exercise 1.6.2 we have

ad− bc = detA = ±1. However note that if we fix a and c, then

ad− bc = ±1 ⇐⇒ ad− bc = 1 or bc− ad = 1 ⇐⇒ ap+ cq = 1 for some integers p, q

This last condition is equivalent to saying gcd(a, c) = 1. Therefore (a, c)t is a column of such a
matrix A if and only if a and c are relatively prime.
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M.2

(a) Prove that every group of even order contains an element of order 2.

(b) Prove that every group of order 21 contains an element of order 3.

Solution.

(a) Proof.
Let G be a group of order 2n. Now partition G into three sets:

G = {1} ∪ {g ∈ G | g2 = 1, g ̸= 1} ∪ {g ∈ G | gk = 1 (k > 2), g, g2 ̸= 1} =: {1} ∪A ∪B

Then if g ∈ B has order k and g−1 has order m, note

gm = gm(1) = gm(g−1)m = gm(gm)−1 = 1 =⇒ m = |g−1| ≥ |g| = k > 2

So in particular we have g−1 ∈ B (in reality m = k, but only this inequality is needed).
Furthermore, inverses are unique and (g−1)−1 = 1, so we can partition B further into pairs
(g, g−1) which are distinct elements, since g = g−1 =⇒ g2 = 1 =⇒ g /∈ B. Therefore |B|
is even, say 2m. However now we have

2n = |G| = |{1}|+ |A|+ |B| = 1 + |A|+ 2m

Since the LHS is even, this forces |A| to be odd, and in particular |A| ≠ 0. Therefore there
exists g ∈ A, which is necessarily an element of order 2.

(b) Proof.
Let G be a group of order 21. Assume otherwise, i.e. every element does not have order 3.
If G = ⟨x⟩ is cyclic, then x7 has order 3, which is a contradiction. Now suppose G is not
cyclic, so no element has order 21. By Lagrange, every nonidentity element in G divides
21 = 3 · 7, so by assumption every nonidentity element must have order 7. This means that
if we take x ∈ G \ {1}, we have distinct elements x, x2, . . . , x6 (6 in total). Now if we take
y ∈ G \ ⟨x⟩, this gives another set of 6 distinct elements. We can keep doing this process
until we exhaust all of G, say after taking x1, . . . xn. We then have

G = {1} ∪ ⟨x1⟩ ∪ · · · ∪ ⟨xn⟩, where ⟨xi⟩ ∩ ⟨xj⟩ = {1} (i ̸= j)

and since each cyclic subgroup has 6 distinct elements, this implies that 21 = 1 + 6n, which
implies n = 20/6 /∈ Z and is a contradiction. Therefore G has an element of order 3.
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M.3

Classify groups of order 6 by analyzing the following three cases:

(i) G contains an element of order 6.

(ii) G contains an element of order 3 but none of order 6.

(iii) All elements of G have order 1 or 2.

Solution.
First, if G has an element x of order 6, then we have G = ⟨x⟩ is cyclic.

Now suppose that G has an element x of order 3 and none of order 6. Note that G
necessarily has an element of order 2, since otherwise every nonidentity element would have
order 3 and we could find distinct elements 1, z1, z

2
1 , z2, z

2
2 , z3, z

2
3 which contradicts G having

order 6. Thus let y be an element of order 2. Note that if xy = yx, then it would have order
lcm(2, 3) = 6 which contradicts our assumption. Thus xy ̸= yx and we now have six distinct
elements, which must be the whole group and so we can start filling in G’s multiplication table:

1 x x2 y xy yx

1 1 x x2 y xy yx
x x x2 1 xy ? ?
x2 x2 1 x ? y ?
y y yx ? 1 ? x
xy xy ? ? x ? x2

yx yx ? y ? ? ?

Note that the property every element appears in each row and column exactly once forces the
red ? to be the element yx (since only x2 and yx are missing in the fourth column and x2 is
already present in the third row). Thus x2y = yx, which along with x3 = 1 and y2 = 1 are the
defining rules of S3 so G is isomorphic to it.

Finally, suppose every nonidentity element of G has order 2. Then for distinct elements x and y,
we have x2 = y2 = (xy)2 = 1. However, note that

xy = (xy)−1 = y−1x−1 = yx

Hence H = {1, x, y, xy} is actually a subgroup of G, so by Lagrange |H| = 4 | 6 = |G|, which is
a contradiction and therefore such a G is impossible.

This exhausts all cases, so every group of order 6 is isomorphic to Z
/
6Z or S3.
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M.4

A semigroup S is a set with an associative law of composition and with an identity. Elements are
not required to have inverses, and the Cancellation Law need not hold. A semigroup S is said to be
generated by an element s if the set {1, s, s2, . . . } of nonnegative powers of s is equal to S. Classify
semigroups that are generated by one element.

Solution.
Let S be a semigroup generated by s. If sm is distinct for all m = 0, 1, . . . , then we have

S∞ = {1, s, s2, . . . }

which is isomorphic to N.
[NB: Z is generated by a single element as a group, but to be generated as a monoid it needs
both 1 and −1, because we are taking only nonnegative powers.]
Otherwise, there exists 0 ≤ m < n such that sm = sn (and n is the smallest such value). In this
case S is finite with n elements:

Sm,n = {1, s, . . . , sm, . . . , sn−1}

note that m has n possible values, so there are n non-isomorphic semigroups of order n.
Therefore every semigroup generated by one element is of the form S∞ or Sm,n.

[NB: What Artin calls a semigroup here is typically called a monoid in modern ab-
stract algebra, which reserves the term semigroup for simply a set with associative law of
composition; hence with these definitions a monoid is a semigroup with an identity]

M.5

Let S be a finite semigroup (see Exercise M.4) in which the Cancellation Law 2.2.3 holds. Prove
that S is a group.

Solution.

Proof.
It suffices to show that every element in S has an inverse. Choose a nonidentity element s ∈ S.
Since S is a finite set, eventually the sequence of elements s, s2, s3, . . . must repeat, i.e. there
exists 1 < m < n such that sm = sn. However, we can apply the cancellation law and get

sm = sn = sn−msm =⇒ 1 = sn−m =⇒ ssn−m−1 = 1 =⇒ s−1 = sn−m−1

Thus s has an inverse and S is a group.
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M.6

Let a = (a1, . . . , ak) and b = (b1, . . . , bk) be points in k-dimensional space Rk. A path from a to b
is a continuous function on the unit interval [0, 1] with values in Rk, a function X : [0, 1] → Rk,
sending t⇝ X(t) = (x1(t), . . . , xk(t)), such that X(0) = a and X(1) = b. If S is a subset of Rk and
if a and B are in S, define a ∼ b if a and b can be joined by a path lying entirely in S.

(a) Show that ∼ is an equivalence relation on S. Be careful to check that any paths you construct
stay within the set S.

(b) A subset S is path connected if a ∼ b for any two points a and b in S. Show that every subset S
is partitioned into path-connected subsets with the property that two points in different subsets
cannot be connected by a path in S.

(c) Which of the following loci in R2 are path-connected: {x2 + y2 = 1}, {xy = 0}, {xy = 1}?

Solution.

(a) Proof.

• Choose a ∈ S. Define the path X : [0, 1] → S by X(t) = a for all 0 ≤ t ≤ 1. The
constant function is continuous, so X is a path from X(0) = a to X(1) = a and so
a ∼ a.

• Suppose a ∼ b. Then there exists a path X : [0, 1] → S from a to b. Then define
X ′ : [0, 1] → S by X ′(t) = X(1 − t). This is continuous since it is a composition of
continuous functions X and t 7→ 1 − t, so X ′ is a path from X ′(0) = X(1) = b to
X ′(1) = X(0) = a and so b ∼ a.

• Suppose a ∼ b and b ∼ c. Then there exists paths X from a to b and Y from b to c.
Then define a path

Z : [0, 1] → S by Z(t) =

{
X(2t) if 0 ≤ t ≤ 1

2

Y (2t− 1) if 1
2 < t ≤ 1

Each piece is continuous by continuity of X and Y , and X(1) = Y (0) = b so the pieces
agree at t = 1

2 so Z is continuous and is a path from a to c, thus a ∼ c.

(b) Proof.
An equivalence relation on a set determines a partition of equivalence classes on that set by
Lemma 2.7.6, so by (a) the path-connected components partition S. Also the components
are necessarily disjoint, so points in different components cannot be path connected.

(c) We can visually see that the first two loci are path-connected and the third locus is not.

x2 + y2 = 1 xy = 0 xy = 1
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M.7

The set of n× n matrices can be identified with the space Rn×n. Let G be a subgroup of GLn(R).
With the notation of Exercise M.6, prove:

(a) If A,B,C,D are in G, and if there are paths in G from A to B and from C to D, then there is
a path in G from AC to BD.

(b) The set of matrices that can be joined to the identity I forms a normal subgroup of G. (It is
called the connected component of G).

Solution.

Proof.
(a)
Let X be a path from A to B and Y a path from C to D. We have the matrix-to-vector map
v : GLn(R) → Rn×n and the matrix-multiplication map m : Rn×n × Rn×n → Rn×n, i.e. usual
matrix multiplication has corresponding operation in Rn×n via

AB↭ m(v(A), v(B))

Hence our paths X and Y are really paths from v(A) to v(B) and from v(C) to v(D). Also note
that m is a continuous function. Hence consider the continuous map

Z : [0, 1] → Rn×n t 7→ m(X(t), Y (t))↭ [X(t)][Y (t)]

Then this is a path from Z(0) = m(X(0), Y (0))↭ AC to Z(1) = m(X(1), Y (1))↭ BD.

(b)
Let H be the set of matrices path-connected to I. We first show H is a subgroup.

• The identity is clearly path-connected to I, so I ∈ H.

• Choose A,B ∈ H. Then there exists paths from I to A and from I to B. Then from (a),
there exists a path from II = I to AB, so AB ∈ H and we have closure.

• Choose A in H and let X be a path from I to A. Then using the maps from (a), we also
have an the matrix-inverse map i : Rn×n → Rn×n by sending v(A) to v(A−1). This map is
continuous, and so we can define the continuous map

Y : [0, 1] → Rn×n t 7→ i(X(t))↭ [X(t)]−1

This then is a path from Y (0) = i(X(0))↭ I−1 = I to Y (1) = i(X(1))↭ A−1. Thus
A−1 ∈ H.

Next, choose A ∈ H and B ∈ G. We want to show that there is a path from I to BAB−1. By
assumption there exists a path X from I to A, and so we define the continuous map

Y : [0, 1] → Rn×n t 7→ m(m(B,X(t)), B−1)↭ B[X(t)]B−1

This then is a path from Y (0)↭ BIB−1 = I to Y (1)↭ BAB−1. Therefore BAB−1 ∈ H and
H is normal in G.
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M.8

(a) The group SLn(R) is generated by elementary matrices of the first type (see Exercise 4.8). Use
this fact to prove that SLn(R) is path-connected.

(b) Show that GLn(R) is a union of two path-connected subsets, and describe them.

Solution.

(a) Proof.
First note that elementary matrices of the first type have the form

1
1 a

1
. . .

1

 = I + a · eij

So for a given row-addition elementary matrix E = I + a · eij , we define a continuous map

X : [0, 1] → SLn(R) t 7→ X(t)↭ I + (ta) · eij

This then is a path from X(0)↭ I to X(1)↭ E. Hence every such elementary matrix is
path-connected to I, and by Exercise M.7 the set H of all matrices path-connected to I is a
subgroup of SLn(R). In particular, this means if we have two elementary matrices E1, E2 of
the first type, then E1E2 ∈ H which implies that any product of elementary matrices of the
first type is in H, which implies H = SLn(R). Now for any A,B ∈ SLn(R) = H, there is a
path from I to A and from I to B, which implies there is a path from A to B and therefore
SLn(R) is path-connected.

(b) Proof.
We claim that GLn(R) = {det(A) > 0} ∪ {det(A) < 0} =: D+ ∪ D− is a union of two
path-connected subsets.

First choose A,B ∈ D+ and define the continuous map

XA : [0, 1] → D+ t 7→ (detA)−t/n ·A

This is a path from XA(0) = A to XA(1) = (detA)−1/n ·A, and note that the property for
M ∈ GLn(R) that det(a ·M) = an det(M) implies

det(XA(1)) = ((detA)−1/n)n(detA) = (detA)−1(detA) = 1 =⇒ XA(1) ∈ SLn(R)

We can similarly define the path XB from B to XB(1) ∈ SLn(R). However by (a) we know
SLn(R) is path-connected, so there is a path from XA(1) to XB(1). Combining our paths
gives a path from A to B and so D+ is path-connected.

Next choose A,B ∈ D−. If we take a matrix C ∈ D− with det(C) = −1 (e.g.
C = I − 2e11), then we have det(AC) = det(A) det(C) = − det(A) > 0 implies that
AC ∈ D+ and similarly BC ∈ D+. Thus from above we know there is a path from AC to
BC, and clearly there is a path from C−1 to C−1. Then by Exercise M.7(a) there is a path
from ACC−1 = A to BCC−1 = B. Therefore D− is path-connected.
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M.9

Let H and K be subgroups of a group G, and let g be an element of G.
The set HgK = {x ∈ G | x = hgk for some h ∈ H, k ∈ K} is called a double coset. Do the double
cosets partition G?

Solution.
We claim yes.

Proof.
First clearly g = 1g1 implies

G =
⋃
g∈G

HgK

So it suffices to show the double cosets are disjoint, which is equivalent to showing that
Hg1K ∩ Hg2K ≠ ∅ =⇒ Hg1K = Hg2K. Indeed, if g ∈ Hg1K ∩ Hg2K then there exists
h, h′ ∈ H and k, k′ ∈ K such that g = hg1k = h′g2k

′. Then

g1 = h−1gk−1 = h−1(h′g2k
′)k−1 = (h−1h′)g2(k

′k−1)

Using this, we have g1 ∈ Hg2K =⇒ Hg1K ⊂ Hg2K.
We also have g2 = (h−1h′)−1g1(k

′k−1)−1 ∈ Hg1K =⇒ Hg2K ⊂ Hg1K.
Therefore Hg1K = Hg2K.

M.10

Let H be a subgroup of a group G. Show that the double cosets (see Exercise M.9)

HgH = {h1gh2 | h1, h2 ∈ H}

are the left cosets gH if and only if H is normal.

Solution.

Proof.
=⇒ : Suppose the double cosets are the left cosets. Then

(gHg−1)H = g(Hg−1H) = g(g−1H) = (gg−1)H = H =⇒ gHg−1 ⊂ H

The symmetric argument (swapping g and g−1) then shows that

(g−1Hg)H = g−1(HgH) = g−1(gH) = (g−1g)H = H =⇒ H ⊃ g−1Hg

which implies gHg−1 ⊃ H. Thus combining with the above gives gHg−1 = H and H is normal.
⇐= : Suppose H ◁G. Then

HgH = (Hg)H
⋆
= (gH)H = gHH = gH

where ⋆ is where we use normality. Therefore the double cosets are the left cosets.
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M.11

Most invertible matrices can be written as a product A = LU of a lower triangular matrix L and an
upper triangular matrix U , where in addition all diagonal entries of U are 1.

(a) Explain how to compute L and U when the matrix A is given.

(b) Prove uniqueness, that there is at most one way to write A as such a product.

(c) Show that every invertible matrix can be written as a product LPU , where L,U are as above
and P is a permutation matrix.

(d) Describe the double cosets LgU (see Exercise M.9).

Solution.

(a) We start with a11. If it is zero, then we cannot decompose A. Otherwise, we scale row 1
by 1

a11
and clear out the first column of rows 2 through n with the proper row additions.

Note that all of these operations are done with lower triangular elementary matrices. Next,
we look at a22 and if it is nonzero (otherwise we cannot continue), we scale row 2 by 1

a22
and clear out the second column of rows 3 through n. This again only uses lower triangular
elementary matrices, and we repeat this process on the entire matrix using lower triangular
elementary matrices until it is upper triangular with all diagonal entries of 1. We can write
this as

ℓk . . . ℓ1A = U

and since the product and inverse of lower triangular matrices are lower triangular, we have
A = (ℓk . . . ℓ1)

−1U =: LU .

(b) Proof.
Suppose that A = L1U1 = L2U2. Since A is invertible and det(U1) = det(U2) = 1, we have
L1, L2, U1, U2 invertible and

A−1 = U−1
1 L−1

1 = U−1
2 L−1

2 =⇒ U2U
−1
1 = L−1

2 L1

Note that U2U
−1
1 is upper triangular with ones on the diagonal and L−1

2 L1 is lower triangular,
and since they are the same matrix these properties all simultaneously hold only when it is
the identity I. Hence

U2U
−1
1 = I =⇒ U1 = U2 and L−1

2 L1 = I =⇒ L1 = L2

Therefore the decomposition is unique.
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(c) Proof.
The general idea is to perform the algorithm from (a) while also taking into account
the pivots possibly not occurring along the diagonal, and then row swapping to get into
upper triangular form. We start with the first column and find the smallest k such that
ak1 is nonzero. Then like in (a) we scale row k by 1

ak1
and clear out the n − k entries

below in the first column. Note that this only uses lower triangular elementary matrices.
Next we look at the second column, starting at the first row, and find the smallest j ≠ k
such that aj2 is nonzero. Then again we scale and clear out the entries below again
using only lower triangular matrices. Again, we now find the smallest i ̸= j, k such
that ai3 is nonzero, and repeat the process. Crucially, this process can always continue
since all we are doing is row reduction and a failure to find these pivot indices means
that the semi row-reduced matrix, and hence A itself, is not invertible which is a contradiction.

By the end of this process, we will have a matrix (ℓk . . . ℓ1)A that has a pivot 1 in
each row and column, so let P be the permutation matrix such that X := P (ℓk . . . ℓ1)A
puts these pivots along the diagonal via row-swaps. We claim X is an upper triangular
matrix U , i.e. every 1 on the diagonal has zeros below it. Indeed given a diagonal
element xcc = 1, then at the entry xrc for r > c, either it was still below the pivot
before swapping rows (in which case it was eliminated to zero via (a)’s algorithm) or it
was above the pivot prior to swapping (in which case it was not chosen to be the pivot
because it was already zero); in either case xrc = 0 and so X is an upper triangular matrix U .

Therefore we can write

P (ℓk . . . ℓ1)A = U =⇒ A = (ℓk . . . ℓ1)
−1P

−1
U =: LPU
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(d) First we clarify notation. Let G = GLn(R) be the group of invertible matrices, let U be the
subgroup of upper triangular matrices with diagonal entries all 1, and let L be the subgroup
of lower triangular matrices. Finally, let P be the set of all permutation matrices. Then we
claim the collection of double cosets can be written

{LgU | g ∈ G} = {LPU | P ∈ P} (⋆)

Furthermore, for P,Q ∈ P we claim LPU = LQU if and only if P = Q.

Proof.
First choose g ∈ G. Then from (c), we have that there exists l ∈ L, u ∈ U,P ∈ P such that
g = lPu. Thus LgU = L(lPu)U = (Ll)P (uU) = LPU and (⋆) holds.

Next, suppose that LPU = LQU . Then in particular there exists l ∈ L and u ∈ U such that
P = lQu, which implies Q−1l−1P = u. This means by permuting the rows and columns of
ℓ := l−1 (lower triangular), we can construct u (upper triangular with diagonal entries all 1).
Let σ be the permutation corresponding to P and τ corresponding to Q. Then we claim

uij = [Q−1ℓP ]ij = ℓτ(i)σ(j) (†)

To see this,

By definition, Qij = 1 iff i = τ(j) and Pij = 1 iff i = σ(j). Since Q−1 = QT , then

[Q−1ℓ]ij =

n∑
k=1

QT
ikℓkj =

n∑
k=1

Qkiℓkj = ℓτ(i)j

Thus

[Q−1ℓP ]ij =
n∑

k=1

[Q−1ℓ]ikPkj =
n∑

k=1

ℓτ(i)kPkj = ℓτ(i)σ(j)

Since uii = 1, by (†) we have ℓτ(i)σ(i) = 1 for i = 1, . . . , n. Furthermore, ℓ is lower triangular
so ℓrc = 0 when r < c. In particular we have τ(i) ≥ σ(i) for all i, since otherwise there
would exist i such that τ(i) < σ(i) =⇒ ℓτ(i)σ(i) = 0 ̸= 1, which is a contradiction. However,
since τ and σ are bijections from {1, . . . , n} to itself, we have

n∑
i=1

(τ(i)− σ(i)) =

n∑
i=1

τ(i)−
n∑

i=1

σ(i) = (1 + · · ·+ n)− (1 + · · ·+ n) = 0

Also, τ(i) ≥ σ(i) implies
∑n

i=1(τ(i)− σ(i)) is a series of nonnegative terms adding to zero,
which forces each term to be zero and τ(i) = σ(i) for all i. Therefore τ = σ and P = Q.
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M.12

Let a and b be positive, relatively prime integers.

(a) Prove that every sufficiently large positive integer n can be obtained as ra+ sb, where r and s
are positive integers.

(b) Determine the largest integer that is not of this form.

Solution. We first solve the exercise as-written:

(a) Proof.
Since gcd(a, b) = 1, then there exists integers R and S such that Ra+ Sb = 1.
Also let R′ be the integer such that 1 ≤ R′ < b and R ≡ R′ mod b. Similarly find S′ such
that 1 ≤ S′ < a and S ≡ S′ mod a. Then we have

1 = Ra+ Sb ≡ R′a mod b

≡ S′b mod a

Now note by construction{
R′a+ S′b ≡ 1 mod a

R′a+ S′b ≡ 1 mod b
=⇒ R′a+ S′b ≡ 1 mod ab

So there exists an integer k such that R′a+ S′b = 1 + k(ab). But R′ < b and S′ < a means

R′a < ab, S′b < ab =⇒ 2 ≤ R′a+ S′b < 2ab

So 1 + k(ab) is bigger than 1 but less than 2ab, which forces k = 1. Thus we have
m := R′a+ S′b = 1 + ab. We claim if n ≥ m, then it has a solution of the above form.

To see this, note that since Ra+ Sb = 1 if we write n = m+ ℓ for ℓ ≥ 0, then

[ℓR+R′]a+ [ℓS + S′]b = ℓ(Ra+ Sb) + [R′a+ S′b] = ℓ(1) +m = n

It remains to adjust the coefficients if either is not positive. Setting r0 := ℓR+R′

and s0 := ℓS + S′, note for any integer t that

(r0 + tb)a+ (s0 − ta)b = r0a+ tab+ s0b− tab = r0a+ s0b = n (⋆)

So if either r0 or s0 is not positive, we want to find t such that both r0 + tb > 0
and s0 − ta > 0, i.e. both coefficients of (⋆) are now positive. Let r′ be the integer
such that 0 < r′ ≤ b and r0 ≡ r′ mod b. Then there exists an integer t such that
r0 = r′ − tb, and we claim this t is what we want. Indeed, we have

s0 − ta =
s0b

b
− (r′ − r0)a

b
=
r0a+ s0b− r′a

b
=
n− r′a

b
≥ n− ba

b

Then since n ≥ m, we have

n− ba ≥ (ab+ 1)− ba = 1

Hence s0 − ta ≥ 1
b > 0, and since s0 − ta is an integer we have s0 − ta ≥ 1.

Furthermore, by construction r0+ tb = r′ ≥ 1, and therefore (r0+ tb)a+(s0− ta)b
is our solution.
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(b) We claim that the largest such integer is ab.

Proof.
By the proof in (a), every integer n ≥ ab+1 can be written in that form, so it suffices to show
ab cannot. Suppose otherwise, i.e. there exists positive integers r, s such that ra+ sb = ab.
Then note that

ra+ sb = ab =⇒ ra = ab− sb = (a− s)b

So by definition b | ra. However gcd(a, b) = 1, which forces b | r. But note

ra = ab− sb < ab =⇒ r < b

Hence b (a positive integer) divides a positive integer r strictly less than it, which is impossible
and so we have a contradiction.
Therefore no such r and s exist.
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There is a similar problem is known as the Frobenius Coin Problem, whose statement is the
same as the exercise but allows r and s to be zero, i.e. they are now nonnegative integers. We
solve this problem below:

(a) Proof.
Since gcd(a, b) = 1, then there exists integers R and S such that Ra+ Sb = 1.
Also let R′ be the integer such that 1 ≤ R′ < b and R ≡ R′ mod b. Similarly find S′ such
that 1 ≤ S′ < a and S ≡ S′ mod a. Then we have

1 = Ra+ Sb ≡ R′a mod b

≡ S′b mod a

Now note
(R′ − 1)a+ (S′ − 1)b = R′a+ S′b− a− b =: m

Furthermore, by construction{
R′a+ S′b ≡ 1 mod a

R′a+ S′b ≡ 1 mod b
=⇒ R′a+ S′b ≡ 1 mod ab

So there exists an integer k such that R′a+ S′b = 1 + k(ab). But R′ < b and S′ < a means

R′a < ab, S′b < ab =⇒ 2 ≤ R′a+ S′b < 2ab

So 1 + k(ab) is bigger than 1 but less than 2ab, which forces k = 1. Thus we have
m = 1 + ab− a− b. We claim if n ≥ m, then it has a solution of the above form.

To see this, note that since Ra+ Sb = 1 if we write n = m+ ℓ for ℓ ≥ 0, then

[ℓR+(R′−1)]a+[ℓS+(S′−1)]b = ℓ(Ra+Sb)+[(R′−1)a+(S′−1)b] = ℓ(1)+m = n

It remains to adjust the coefficients if either is negative. Setting r0 := ℓR+(R′−1)
and s0 := ℓS + (S′ − 1), note for any integer t that

(r0 + tb)a+ (s0 − ta)b = r0a+ tab+ s0b− tab = r0a+ s0b = n (⋆)

So if either r0 or s0 is negative, we want to find t such that both r0 + tb ≥ 0 and
s0 − ta ≥ 0, i.e. both coefficients of (⋆) are now nonnegative. Let r′ be the integer
such that 0 ≤ r′ < b and r0 ≡ r′ mod b. Then there exists an integer t such that
r0 = r′ − tb, and we claim this t is what we want. Indeed, we have

s0 − ta =
s0b

b
− (r′ − r0)a

b
=
r0a+ s0b− r′a

b
=
n− r′a

b
≥ n− (b− 1)a

b

where the last inequality comes from r′ < b. Then since n ≥ m, we have

n− (b− 1)a ≥ (ab− a− b+ 1)− ba+ a = −b+ 1

Hence s0 − ta ≥ −b+1
b = −1 + 1

b > −1, and since s0 − ta is an integer we have
s0 − ta ≥ 0. Furthermore, by construction r0 + tb = r′ ≥ 0, and therefore
(r0 + tb)a+ (s0 − ta)b is our solution.

79



(b) We claim that the largest such integer is ab− a− b.

Proof.
By the proof in (a), every integer n ≥ ab − a − b + 1 can be written in that form, so it
suffices to show ab− a− b cannot. Suppose otherwise, i.e. there exists nonnegative integers
r, s such that ra+ sb = ab− a− b. Then note{

ra+ sb = ab− a− b

ra+ sb = ab− a− b
=⇒

{
sb ≡ −b mod a

ra ≡ −a mod b
=⇒

{
s ≡ −1 mod a

r ≡ −1 mod b

But since s ≥ 0, this means s ≥ a− 1. Similarly, we have r ≥ b− 1. Thus

ab− a− b = ra+ sb ≥ (b− 1)a+ (a− 1)b = ab− a+ ab− b =⇒ 0 ≥ ab

However a and b both positive means ab > 0, which is a contradiction.
Therefore no such r and s exist.
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M.13

The starting position is the point (1, 1), and a permissible “move” replaces a point (a, b) by one of
the points (a+ b, b) or (a, a+ b). So the position after the first move will be either (2, 1) or (1, 2).
Determine the points that can be reached.

Solution.
Let P be set of all points that can be reached. We claim P = {(a, b) | a, b > 0 and gcd(a, b) = 1}.
First, a (possibly obvious) lemma:

Lemma. If a > b, then gcd(a− b, b) = gcd(a, b).

Proof. (of Lemma)
Let k = gcd(a, b) and ℓ = gcd(a− b, b). Then by definition

ℓ | b and ℓ | (a− b) =⇒ ℓ | a

Hence ℓ is a divisor of a and b, which by definition means ℓ ≤ k. However

k | b and k | a =⇒ k | (a− b)

Hence k is a divisor of a− b and b, which by definition means k ≤ ℓ. Thus k = ℓ.

Now we prove the claim.

Proof.
We first show that for any two positive, relatively prime integers a and b, we have that
a, b < n =⇒ (a, b) ∈ P for all n ≥ 2. We induct on n.
The base case is when a, b < 2, which forces (a, b) = (1, 1) and is our starting point, so (a, b) ∈ P .
Now assume that the result holds for some n. It suffices to show that (a, b) ∈ P when either a = n
or b = n. Both cannot be simultaneously true (otherwise gcd(a, b) = n ̸= 1), and by the symme-
try of the game moves, it suffices to only show the case when a = n. Thus fix a = n and suppose
1 ≤ b < n such that gcd(a, b) = 1. Then note by the lemma that gcd(a− b, b) = gcd(a, b) = 1.
Furthermore we have b < n and a − b = n − b ≤ n − 1 < n, so we can apply the IH to get
(a − b, b) ∈ P . Then we can apply the first move to get ([a − b] + b, b) = (a, b) ∈ P , which
completes the induction and gives the inclusion P ⊃ {(a, b) | a, b > 0 and gcd(a, b) = 1}.

Next, choose (a, b) ∈ P . Clearly from the starting point and rules we have that a, b
are both positive, so we just have to show that gcd(a, b) = 1. Note that we can write

A :=

[
a
b

]
= En . . . E1

[
1
1

]
where Ei ∈

{[
1 1
0 1

]
,

[
1 0
1 1

]}
=: {E,E′}

Hence we have[
1
1

]
= E−1

1 . . . E−1
n A where E−1

i ∈ {E−1, E′−1} =

{[
1 −1
0 1

]
,

[
1 0
−1 1

]}
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But note that [
1 −1
0 1

] [
c
d

]
=

[
c− d
d

]
and

[
1 0
−1 1

] [
c
d

]
=

[
c

d− c

]
And so if E−1

n = E−1, then (a− b, b) was the previous position and in particular a− b is positive
and a > b. Similarly if E−1

n = E′−1, then we can guarantee that b > a. Hence if we define

GCD

([
c
d

])
:= gcd(c, d)

then our lemma applies and says that GCD(E−1
n A) = GCD(A). The same reasoning and

application of the lemma again says that GCD(E−1
n−1E

−1
n A) = GCD(A). Indeed, all we are

doing here is the Euclidean algorithm. Hence after doing n steps we have

GCD(A) = GCD(E−1
1 . . . E−1

n A) = GCD

([
1
1

])
= gcd(1, 1) = 1

Therefore gcd(a, b) = 1.
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M.14

Prove that the two matrices

E =

[
1 1
0 1

]
, E′ =

[
1 0
1 1

]
generate the group SL2(Z) of all integer matrices with determinant 1. Remember that the subgroup
they generate consists of all elements that can be expressed as products using the four elements
E,E′, E−1, E′−1.
Hint: Do not try to write a matrix directly as a product of the generators. Use row reduction.

Solution.

Proof.

Choose M :=

[
a b
c d

]
∈ SL2(Z). This means that ad− bc = 1, which by Corollary 2.3.6 means

that gcd(a, c) = 1. Note that

E−1M =

[
1 −1
0 1

] [
a b
c d

]
=

[
a− c b− d
c d

]
and E′−1M =

[
1 0
−1 1

] [
a b
c d

]
=

[
a b

c− a d− b

]
Hence we can perform the Euclidean algorithm to reduce M : Set M0 =M and define

Mi =

{
E−1Mi−1 if [Mi−1]11 ≥ [Mi−1]21

E′−1Mi−1 if [Mi−1]11 < [Mi−1]21

Each of these steps preserves the gcd of the first column (see Lemma in the proof of Exercise
M.13), so we can keep going until gcd(a, c) = gcd(1, 0) or gcd(a, c) = gcd(0, 1) and, say after n
steps, Mn = En . . . E1M (for Ei ∈ {E−1, E′−1}) looks like

Mn =

[
1 b′

0 d′

]
or Mn =

[
0 b′

1 d′

]
Note that det(E−1) = det(E′−1) = 1, so det(Mi) = det(M) = 1 for all i. In particular,
det(Mn) = 1 which forces (b′, d′) = (k, 1) in the first case and (b′, d′) = (−1, ℓ) in the second.
Furthermore,

Ek =

[
1 k
0 1

]
and (E′−1)ℓ−1(E−1E′) =

[
1 0

−(ℓ− 1) 1

] [
0 −1
1 1

]
=

[
0 −1
1 ℓ

]
Hence in the first case,

En . . . E1M =Mn = Ek =⇒ M = (En . . . E1)
−1Ek ∈ ⟨E,E′⟩

and in the second case,

En . . . E1M =Mn = E′ℓ−1E−1E′ =⇒ M = (En . . . E1)
−1E′ℓ−1E−1E′ ∈ ⟨E,E′⟩

Therefore M , and hence all of SL2(Z), is generated by E and E′.
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M.15

Determine the semigroup S (see Exercise M.4) of matrices A that can be written as a product, of
arbitrary length, each of whose terms is one of the two matrices[

1 1
0 1

]
or

[
1 0
1 1

]
.

Show that every element of S can be expressed as such a product in exactly one way.

Solution.
We claim S is the semigroup of integer matrices with nonnegative entries and determinant 1.

Lemma. Let A =

[
a b
c d

]
with nonnegative entries and determinant 1.

If a+ b > c+ d, then a ≥ c and b ≥ d. Similarly, if a+ b < c+ d, then a ≤ c and b ≤ d.

Proof. (of Lemma)
Suppose a+ b > c+ d. Then if a < c, we have

d < a+ b− c < a+ b− a = b

But now
0 ≤ a < c, 0 ≤ d < b =⇒ ad < bc =⇒ 1 = detA = ad− bc < 0

which is a contradiction. The symmetric argument shows b < d leads to a contradiction also, so
we have a ≥ c and b ≥ d. Finally, flipping inequalities proves the second statement.

Now we prove our original claim.

Proof.

Let E =

[
1 1
0 1

]
, E′ =

[
1 0
1 1

]
. Note that both E and E′ have nonnegative entries and

determinant 1, so any product of them will also have nonnegative entries and determinant 1.

Hence it suffices to show any matrix A =

[
a b
c d

]
with nonnegative entries and determinant 1

can be written as a product of E and E′, i.e. A ∈ S. If we let k = gcd(a+ b, c+ d), note that

k | (a+ b), k | (c+ d) =⇒ k | ([a+ b]d− [c+ d]b) =⇒ k | (ad− bc) =⇒ k | 1 =⇒ k = 1

Hence we can take [
a b
c d

] [
1
1

]
=

[
a+ b
c+ d

]
and, similar to the proofs of the previous two exercises, use E−1 and E′−1 to perform the
Euclidean algorithm: let A0 = A and for

Ai

[
1
1

]
=

[
ai bi
ci di

] [
1
1

]
=

[
ai + bi
ci + di

]
, define Ai+1 =

{
E−1Ai if ai + bi > ci + di

E′−1Ai if ai + bi < ci + di

and stop if ai + bi = ci + di. Note that each Ai+1 has nonnegative entries by the lemma since

E−1

[
a b
c d

]
=

[
a− c b− d
c d

]
and E′−1

[
a b
c d

]
=

[
a b

c− a d− b

]
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Furthermore, this process, the Euclidean algorithm, preserves the gcd, i.e. gcd(ai + bi, ci + di) =
gcd(a + b, c + d) = 1 for every i (see proof of Exercise M.13). Hence when this algorithm
terminates after n steps (which it must since Ai+1 has entries necessarily smaller than Ai but
remain all nonnegative), we will have

gcd(an + bn, cn + dn) = 1 and m := an + bn = cn + dn =⇒ gcd(m,m) = 1 =⇒ m = 1

Thus [
1
1

]
=

[
an + bn
cn + dn

]
= An

[
1
1

]
and the entries of An being nonnegative force an = 1, bn = 0 or an = 0, bn = 1, and similarly for
cn, dn. However we also have det(An) = 1, so andn− bncn = 1 is only satisfied when an = dn = 1
and bn = cn = 0, i.e. An = I. Thus

I = An = Bn . . . B1A =⇒ A = (Bn . . . B1)
−1 = B−1

1 . . . B−1
n

where each Bi is either E−1 or E′−1. But now A is a product of matrices that are either E and
E′, therefore A ∈ S.

Finally, for uniqueness suppose for any A ∈ S that A = E1 . . . En for Ei ∈ {E,E′}.
We claim this product is unique for every n ≥ 0. We induct on n.
For the base case, n = 0 means A = I, whose product is the empty product and is unique.
Now assume every product of length n− 1 is unique. Then write A = E1E2 . . . En =: E1A

′. By
IH the factorization of A′ is unique, so it suffices to show that the choice of E1 is forced. Denote

A =

[
a b
c d

]
and A′ =

[
a′ b′

c′ d′

]
and consider cases:

• E1 = E. Then we have A′ = E−1A and[
a′ b′

c′ d′

]
=

[
1 −1
0 1

] [
a b
c d

]
=

[
a− c b− d
c d

]
Since all of these entries are nonnegative, we thus have

A′ = E−1A ⇐⇒

{
a′ = a− c ≥ 0

b′ = b− d ≥ 0
⇐⇒

{
a ≥ c

b ≥ d

• E1 = E′. Then we have and similarly can deduce

A′ = E′−1A ⇐⇒
[
a′ b′

c′ d′

]
=

[
1 0
−1 1

] [
a b
c d

]
=

[
a b

c− a d− b

]
⇐⇒

{
a ≤ c

b ≤ d

Also note that for n ≥ 1 that E1 . . . En ̸= I (e.g. since each Ei only increases an off-diagonal
entry and both starting matrices E and E′ have a 1 on the off-diagonal), so in particular A ̸= I
and either a+ b > c+ d or a+ b < c+ d. Then by the lemma either a ≥ c, b ≥ d or a ≤ c, b ≤ d.
It is impossible for both to be true simultaneously, since that would force a = c and b = d and
then 1 = detA = ad− bc = 0 which is a contradiction. Thus exactly one is true, so exactly one
of A′ = E−1A or A′ = E′−1A is true, so exactly one of E1 = E or E1 = E′ is true. Therefore
the choice of E1 is forced, which completes the induction and the product is unique.
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M.16

By definition, English words have the same pronunciation if their phonetic spellings in the dictionary
are the same. The homophonic group H is generated by the letters of the alphabet, subject to the
following relations: English words with the same pronunciation represent equal elements of the group.
Thus be = bee, and since H is a group, we can cancel be to conclude that e = 1. Try to determine
the group H.

Solution.
The 1993 paper “Homophonic Quotients of Free Groups” by Jean-François Mestre, René Schoof,
Lawrence Washington, and Don Zagier (which is what Artin references in a footnote) shows that
H is trivial, whose proof we replicate here:

Proof.
From the fact that e = 1, we can also conclude that the other vowels a, i, o, u, y are all the
identity from the homophones

lead = led maid = made sow = sew buy = by lye = lie

With this, we next show w, y, h, k, n, p, b are all trivial via

sow = so hour = our knight = night damn = dam psalter = salter plumb = plum

Next, we have s, t, l, r,m are all trivial by

base = bass butt = but tolled = told barred = bard dammed = damned

Now d and g are the identity by

chased = chaste sign = sine

Moving along, we have z, c, j, q, x trivial via

daze = days cite = sight jeans = genes queue = cue tax = tacks

This finally leaves f = v = 1 by

phase = faze leitmotiv = leitmotif

Therefore every letter is the identity and the group H is trivial.
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