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§1 - Fields

1.1

Prove that the numbers of the form a+ b
√
2 where a and b are rational numbers form a subfield of C.

Solution.

Proof.
Denote Q[

√
2] := {a+ b

√
2 | a, b ∈ Q}. We check the definition of subfield of C that Artin gives,

i.e. closed under addition, subtraction, multiplication, and division as well as contains 1.

• For any a+ b
√
2, c+ d

√
2 ∈ Q[

√
2], we have

(a+ b
√
2) + (c+ d

√
2) = (a+ c) + (b+ d)

√
2 ∈ Q[

√
2]

since a+ c ∈ Q and b+ d ∈ Q by closure of Q.

• For any a+ b
√
2 ∈ Q[

√
2], we have

−(a+ b
√
2) = (−a) + (−b)

√
2 ∈ Q[

√
2]

since −a ∈ Q and −b ∈ Q by closure of Q.

• For any a+ b
√
2, c+ d

√
2 ∈ Q[

√
2], we have

(a+ b
√
2)(c+ d

√
2) = (ac+ 2bd) + (ad+ bc)

√
2 ∈ Q[

√
2]

since ac+ 2bd ∈ Q and ad+ bc ∈ Q.

• For any a+ b
√
2 ∈ Q[

√
2], we have

(a+ b
√
2)−1 =

1

a+ b
√
2
· a− b

√
2

a− b
√
2
=
a− b

√
2

a2 − 2b2
=

(
a

a2 − 2b2

)
+

(
−b

a2 − 2b2

)√
2 ∈ Q[

√
2]

since a
a2−2b2

∈ Q and −b
a2−2b2

∈ Q.

• Finally, we have 1 = 1 + 0
√
2 ∈ Q[

√
2].

Therefore Q[
√
2] is a subfield of C.
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1.2

Find the inverse of 5 modulo p, for p = 7, 11, 13, and 17.

Solution.
We solve 5x ≡ 1 mod p.

(i) p = 7: We have table

x 0 1 2 3 4 5 6
5x mod 7 0 5 3 1 6 4 2

Hence 5−1 = 3 in F7.

(ii) p = 11: We have table

x 0 1 2 3 4 5 6 7 8 9 10
5x mod 11 0 5 10 4 9 3 8 2 7 1 6

Hence 5−1 = 9 in F11.

(iii) p = 13: We have table

x 0 1 2 3 4 5 6 7 8 9 10 11 12
5x mod 13 0 5 10 2 7 12 4 9 1 6 11 3 8

Hence 5−1 = 8 in F13.

(iv) p = 17: We have table

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
5x mod 17 0 5 10 15 3 8 13 1 6 11 16 4 9 14 2 7 12

Hence 5−1 = 7 in F17.
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1.3

Compute the product polynomial (x3 + 3x2 + 3x+ 1)(x4 + 4x3 + 6x2 + 4x+ 1) when the coefficients
are regarded as elements of the field F7. Explain your answer.

Solution.
We have by the binomial theorem that

(x3 + 3x2 + 3x+ 1)(x4 + 4x3 + 6x2 + 4x+ 1) = (x+ 1)3(x+ 1)4 = (x+ 1)7 =
7∑

i=0

(
7

i

)
xi

However, 7 divides
(
7
i

)
= 7!

i!(7−i)! for i = 1, . . . , 6, so we have

7∑
i=0

(
7

i

)
xi = x7 + 1 +

6∑
i=1

(
7

i

)
xi ≡ x7 + 1 +

6∑
i=1

0xi ≡ x7 + 1

Thus the product is x7 + 1. More generally, (x+ 1)p ≡ xp + 1 mod p for any prime p.

4



1.4

Consider the system of linear equations
[
6 −3
2 6

] [
x1
x2

]
=

[
3
1

]
.

(a) Solve the system in Fp when p = 5, 11, and 17.

(b) Determine the number of solutions when p = 7.

Solution.

Denote A =

[
6 −3
2 6

]
, X =

[
x1
x2

]
, B =

[
3
1

]
.

(a) We have A−1 = 42−1

[
6 3
−2 6

]
and so our solution is

X = A−1B = 42−1

[
6 3
−2 6

] [
3
1

]
= 42−1

[
21
0

]
Now we work modulo p for:

• p = 5: 42−1 ≡ 2−1 = 3, so

X = 42−1

[
21
0

]
≡ 3

[
1
0

]
≡
[
3
0

]
• p = 11: 42−1 ≡ 9−1 = 5, so

X = 42−1

[
21
0

]
≡ 5

[
10
0

]
≡
[
6
0

]
• p = 17: 42−1 ≡ 8−1 = 15, so

X = 42−1

[
21
0

]
≡ 15

[
4
0

]
≡
[
9
0

]
(b) Note that detA = 42 ≡ 0 mod 7, so A is not invertible. However, we can write our system

modulo 7:

AX ≡
[
−1 −3
2 6

]
X ≡

[
−(x1 + 3x2)
2(x1 + 3x2)

]
≡
[
3
−6

]
≡ B

So we have a solution iff x1 + 3x2 ≡ −3 ≡ 4. We can compute the table where each entry is
x1 + 3x2 mod 7 to find our solutions:

x1\x2 0 1 2 3 4 5 6
0 0 3 6 2 5 1 4
1 1 4 0 3 6 2 5
2 2 5 1 4 0 3 6
3 3 6 2 5 1 4 0
4 4 0 3 6 2 5 1
5 5 1 4 0 3 6 2
6 6 2 5 1 4 0 3

so we have solution set with 7 elements{[
0
6

]
,

[
1
1

]
,

[
2
3

]
,

[
3
5

]
,

[
4
0

]
,

[
5
2

]
,

[
6
4

]}
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1.5

Determine the primes p such that the matrix

A =

 1 2 0
0 3 −1
−2 0 2


is invertible, when its entries are considered to be in Fp.

Solution.
We have A is invertible in Fp if and only if detA is not divisible mod p. Since detA = 10, in
this case A−1 exists if and only if p ̸= 2 and p ̸= 5.
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1.6

Solve completely the system of linear equations AX = 0 and AX = B, where

A =

1 1 0
1 0 1
1 −1 −1

 , and B =

 1
−1
1


(a) in Q, (b) in F2, (c) in F3, (d) in F7.

Solution.
Note that detA = 3. So if 3 is invertible in our field, then A is invertible and X = 0 is the only
solution to AX = 0 and X = A−1B is the solution to AX = B. We can calculate

A−1B = 3−1

 1 1 1
2 −1 −1
−1 2 −1

 1
−1
1

 = 3−1

 1
2
−4


Now we consider each field:

(a) In Q, we have 3−1 = 1
3 and so AX = 0 has the unique solution X = 0 and AX = B has the

unique solution X =
[
1
3

2
3 −4

3

]t.
(b) In F2, we have 3−1 ≡ 1−1 = 1 and so AX = 0 has the unique solution X = 0 and AX = B

has the unique solution X =
[
1 0 0

]t.
(c) In F3, 3 ≡ 0 is not invertible so we need to manually inspect our systems. Note that

AX =

1 1 0
1 0 1
1 −1 −1

x1x2
x3

 ≡

1 1 0
1 0 1
1 2 2

x1x2
x3

 =

 x1 + x2
x1 + x3

x1 + 2x2 + 2x3


Hence the system AX = 0 is really the equations

x1 + x2 ≡ 0

x1 + x3 ≡ 0

x1 + 2x2 + 2x3 ≡ 0

We consider cases:

• If x1 = 0, equation 1 forces x2 = 0 and equation 2 forces x3 = 0. This satisfies equation
3, so we have a solution.

• If x1 = 1, equation 1 forces x2 = 2 and equation 2 forces x3 = 2. This satisfies equation
3, so we have a solution.

• If x1 = 2, equation 1 forces x2 = 1 and equation 2 forces x3 = 1. This satisfies equation
3, so we have a solution.

This exhausts all possible values of x1 ∈ F3, so the system AX = 0 has three solutions
X =

[
0 0 0

]t
,
[
1 2 2

]t
,
[
2 1 1

]t.
Next, the system AX = B is the equations

x1 + x2 ≡ 1

x1 + x3 ≡ 2

x1 + 2x2 + 2x3 ≡ 1
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We consider cases:

• If x1 = 0, equation 1 forces x2 = 1 and equation 2 forces x3 = 2. This does not satisfy
equation 3, so no solutions have x1 = 0.

• If x1 = 1, equation 1 forces x2 = 0 and equation 2 forces x3 = 1. This does not satisfy
equation 3, so no solutions have x1 = 1.

• If x1 = 2, equation 1 forces x2 = 2 and equation 2 forces x3 = 0. This does not satisfy
equation 3, so no solutions have x1 = 2.

This exhausts all cases of x1, so AX = B has no solutions.

(d) In F7, we have 3−1 = 5 and so AX = 0 has the unique solution X = 0 and AX = B has the
unique solution X =

[
5 3 1

]t
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1.7

By finding primitive elements, verify that the multiplicative group F×
p is cyclic for all primes p < 20.

Solution.
We need to check the cases p = 2, 3, 5, 7, 11, 13, 17, 19, i.e. find an element of order p− 1 in F×

p .

• p = 2: Then F×
2 = {1} = ⟨1⟩ is clearly cyclic.

• p = 3: We have F×
3 = {1, 2} = ⟨2⟩ is cyclic.

• p = 5: Note that

3 = 30 × 3 ≡ 1× 3 ≡ 3 mod 5

32 = 31 × 3 ≡ 3× 3 ≡ 4 mod 5

33 = 32 × 3 ≡ 4× 3 ≡ 2 mod 5

34 = 33 × 3 ≡ 2× 3 ≡ 1 mod 5

Hence 3 has order 4 and so F×
5 = ⟨3⟩.

• p = 7: We have

3 = 30 × 3 ≡ 1× 3 ≡ 3 mod 7

32 = 31 × 3 ≡ 3× 3 ≡ 2 mod 7

33 = 32 × 3 ≡ 2× 3 ≡ 6 mod 7

34 = 33 × 3 ≡ 6× 3 ≡ 4 mod 7

35 = 34 × 3 ≡ 4× 3 ≡ 5 mod 7

36 = 35 × 3 ≡ 5× 3 ≡ 1 mod 7

Hence 3 has order 6 and so F×
7 = ⟨3⟩.

• p = 11: We have

2 = 20 × 2 ≡ 1× 2 ≡ 2 mod 11

22 = 21 × 2 ≡ 2× 2 ≡ 4 mod 11

23 = 22 × 2 ≡ 4× 2 ≡ 8 mod 11

25 = 23 × 22 ≡ 8× 4 ≡ 10 mod 11

28 = 25 × 23 ≡ 10× 8 ≡ 3 mod 11

210 = 28 × 22 ≡ 3× 4 ≡ 1 mod 11

Note that by Lagrange, 2 can only have orders of 1, 2, 5, and 10, so the above shows 2 has
order 10 and F×

11 = ⟨2⟩.
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• p = 13: We have

2 = 20 × 2 ≡ 1× 2 ≡ 2 mod 13

22 = 21 × 2 ≡ 2× 2 ≡ 4 mod 13

23 = 22 × 2 ≡ 4× 2 ≡ 8 mod 13

24 = 23 × 2 ≡ 8× 2 ≡ 3 mod 13

26 = 24 × 22 ≡ 3× 4 ≡ 12 mod 13

212 = 23 × 23 × 23 ≡ 3× 3× 3 ≡ 1 mod 13

Hence 2 does not have order 1, 2, 3, 4, or 6, so by Lagrange 2 must have order 12 and
F×
13 = ⟨2⟩.

• p = 17: We have

3 = 30 × 3 ≡ 1× 3 ≡ 3 mod 17

32 = 31 × 3 ≡ 3× 3 ≡ 9 mod 17

33 = 32 × 3 ≡ 9× 3 ≡ 10 mod 17

34 = 33 × 3 ≡ 10× 3 ≡ 13 mod 17

35 = 34 × 3 ≡ 13× 3 ≡ 5 mod 17

38 = 35 × 33 ≡ 5× 10 ≡ 16 mod 17

310 = 35 × 35 ≡ 5× 5 ≡ 8 mod 17

311 = 310 × 3 ≡ 8× 3 ≡ 7 mod 17

316 = 311 × 35 ≡ 7× 5 ≡ 1 mod 17

Hence 3 does not have order 1, 2, 4, or 8, so by Lagrange 3 must have order 16 and
F×
17 = ⟨3⟩.

• p = 19: We have

2 = 20 × 2 ≡ 1× 2 ≡ 2 mod 19

22 = 21 × 2 ≡ 2× 2 ≡ 4 mod 19

23 = 22 × 2 ≡ 4× 2 ≡ 8 mod 19

25 = 23 × 22 ≡ 8× 4 ≡ 13 mod 19

26 = 25 × 2 ≡ 13× 2 ≡ 7 mod 19

28 = 26 × 22 ≡ 7× 4 ≡ 9 mod 19

29 = 28 × 2 ≡ 9× 2 ≡ 18 mod 19

212 = 26 × 26 ≡ 7× 7 ≡ 11 mod 19

213 = 212 × 2 ≡ 11× 2 ≡ 3 mod 19

218 = 213 × 25 ≡ 3× 13 ≡ 1 mod 19

Hence 2 does not have order 1, 2, 3, 6, or 9, so by Lagrange 2 must have order 18 and
F×
19 = ⟨2⟩.
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1.8

Let p be a prime integer.

(a) Prove Fermat’s Theorem: For every integer a, ap ≡ a modulo p.

(b) Prove Wilson’s Theorem: (p− 1)! ≡ −1 (modulo p).

Solution.

(a) Proof.
If p | a, then we also have p | ap and so ap ≡ a ≡ 0 mod p. Hence we may assume that p ∤ a,
i.e. gcd(p, a) = 1. Now note that p does not divide any element of F×

p = {1, 2, . . . , p− 1}.
Hence for every b ∈ F×

p ,
p ∤ a, p ∤ b =⇒ p ∤ ab

and so p does not divide any element of aF×
p = {a, a2, . . . , a(p−1)}. Then for any ab ∈ aF×

p ,
its remainder modulo p is an element of F×

p , and in fact aF×
p modulo p simply permutes the

elements of F×
p . To see this, note that

ab1 ≡ ab2 =⇒ a(b1 − b2) ≡ 0 =⇒ p | (b1 − b2)

But b1, b2 ∈ {1, . . . , p− 1} means that |b1 − b2| < p, so the only multiple of p that b1 − b2
can be is zero and so b1 − b2 = 0 gives b1 = b2. Hence the map

fa : F×
p → F×

p b 7→ ab mod p

is injective, and as a map between the same finite set, must also be surjective. Now taking
the product of all the elements in aF×

p , we have modulo p that

ap−1(p− 1)! =
∏

ab∈aF×
p

ab ≡
∏
b∈F×

p

b = (p− 1)!

Therefore

ap−1(p− 1)! ≡ (p− 1)! mod p =⇒ ap−1 ≡ 1 mod p =⇒ ap ≡ a mod p

(b) Proof.
If p = 2, then we have (2− 1)! = 1 ≡ −1 mod 2. Hence we may assume p > 2 is odd.
Let f1(x) = xp−1 − 1. Note that modulo p, we have for any a ∈ F×

p that

f1(a) ≡ 0 ⇐⇒ ap−1 ≡ 1 ⇐⇒ ap ≡ a

and the last is true by (a). Hence f1 has roots 1, . . . , p− 1 modulo p.
Next, let f2(x) = (x− 1) . . . (x− (p− 1)). This also has roots 1, . . . , p− 1 modulo p, with
leading term xp−1 and constant term (−1)(−2) . . . (−(p− 1)) = (−1)p−1(p− 1)! = (p− 1)!
(since p is odd). However, now g(x) = f2(x) − f1(x) has degree p − 2 with p − 1 roots,
which forces g to be constantly zero (all of this modulo p). In particular its constant term
(p− 1)! + 1 is zero modulo p, and therefore

(p− 1)! + 1 ≡ 0 mod p =⇒ (p− 1)! ≡ −1 mod p

[NB: The above proof relies on Lagrange’s Theorem (not the one about subgroup orders, but
one about polynomials with coefficients in Fp). One can more cleanly (i.e. without relying
on other results) prove Wilson’s theorem using a counting argument via pairing up elements
of Fp with their inverses, but it does not use (a) unlike in the given proof.]
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1.9

Determine the orders of the matrices
[
1 1

1

]
and

[
2

1

]
in the group GL2(F7).

Solution.
We have that [

1 1
0 1

]n
=

[
1 n
0 1

]
and

[
2 0
0 1

]n
=

[
2n 0
0 1n

]
Hence

[
1 1
0 1

]
has order 7 and

[
2 0
0 1

]
has order 3.

1.10

Interpreting matrix entries in the field F2, prove that the four matrices
[
0 0
0 0

]
,

[
1 0
0 1

]
,

[
1 1
1 0

]
,

[
0 1
1 1

]
form a field.
Hint: You can cut the work down by using the fact that various laws are known to hold for addition
and multiplication of matrices.

Solution.

Proof.
We first denote our matrices

Z =

[
0 0
0 0

]
, I =

[
1 0
0 1

]
, A =

[
1 1
1 0

]
, B =

[
0 1
1 1

]
We have closure of both addition and multiplication via the tables

+ Z I A B

Z Z I A B
I I Z B A
A A B Z I
B B A I Z

× Z I A B

Z Z Z Z Z
I Z I A B
A Z A B I
B Z B I A

Furthermore, this also shows we have additive identity Z and multiplicative identity I, along with
the existence of inverses. By nature of matrix addition and multiplication we have associativity
of both operations and the distributive property holds. Finally, the tables show that both
operations are commutative, so we indeed have a field.
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1.11

Prove that the set of symbols {a + bi | a, b ∈ F3} forms a field with nine elements, if the laws of
composition are made to mimic addition and multiplication of complex numbers. Will the same
method work for F5? For F7? Explain.

Solution.
More generally, we discuss for what primes p does Cp := {a+ bi | a, b ∈ Fp} form a field.
Addition is always fine (i.e. C+

p is always abelian), so multiplication is where we need to focus.
Indeed, since we are mimicking C we have

(a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i

Closure then follows from the closure of Fp as a field, and associativity and commutativity follow
by construction. We have identity 1 + 0i, so all we need is existence of multiplicative inverses.
Recall that in C we have

(a+ bi)(a− bi) = a2 + b2 =⇒ 1

a+ bi
=

a− bi

a2 + b2

and so in Cp we have/need (a+ bi)−1 = (a− bi)(a2 + b2)−1. Thus for any a, b ̸= 0 we have

(a+ bi)−1 ∈ Cp exists ⇐⇒ (a2 + b2)−1 ∈ Cp exists ⇐⇒ (a2 + b2) ̸= 0 ∈ Fp ⇐⇒ p ∤ (a2 + b2)

and so Cp is a field if and only if (a2 + b2) ≡ 0 mod p =⇒ a = b = 0.

With this characterization, we consider the cases originally given:

• p = 3: Consider the table where each entry is a2 + b2 modulo 3:

a \ b 0 1 2
0 0 1 1
1 1 2 2
2 1 2 2

Hence C3 is a field.

• p = 5: We have table, now with each table modulo 5:

a \ b 0 1 2 3 4
0 0 1 4 4 1
1 1 2 0 0 2
2 4 0 3 3 0
3 4 0 3 3 0
4 1 2 0 0 2

So C5 is not a field; from the table we can even state that, e.g., 1 + 2i has no inverse.
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• p = 7: Again, we have the table:

a \ b 0 1 2 3 4 5 6
0 0 1 4 2 2 4 1
1 1 2 5 3 3 5 2
2 4 5 1 6 6 1 5
3 2 3 6 4 4 6 3
4 2 3 6 4 4 6 3
5 4 5 1 6 6 1 5
6 1 2 5 3 3 5 2

Hence C7 is a field.

[NB: Rather than computing the entire table and looking for zeros, we really only need to
compute the first row and then see if any two can be added to get 0 modulo p. In the case of
p = 7, the only possible nonzero values are 1, 2, and 4, which cannot add to a multiple of 7 using
only two of the numbers and so we have a field; in the case of p = 5, we had values of 1 and 4
which can be added together to get 5 and so we do not have a field.]
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§2 - Vector Spaces

2.1

(a) Prove that the scalar product of a vector with the zero element of the field F is the zero vector.

(b) Prove that if w is an element of a subspace W , then −w is in W too.

Solution.

(a) Proof.
Let v ∈ V be a vector in a vector space over F and let 0⃗ ∈ V be the zero vector, i.e. the
additive inverse in V +. Then note that by 0 ∈ F being the additive identity and distributivity
in V we have

0v = (0 + 0)v = 0v + 0v

Hence by the cancellation law we have 0v = 0⃗.

(b) Proof.
Let W ⊂ V be a subspace and w ∈W a vector. By (a), we have 0w = 0⃗, and if −1 is the
additive inverse of 1 ∈ F , then we have

(−1)w + w = (−1)w + 1w = (−1 + 1)w = 0w = 0⃗

which implies (−1)w = −w by uniqueness of inverses. Hence −w is a scalar multiple of w,
and therefore −w ∈W by closure.

2.2

Which of the following subsets is a subspace of the vector space Fn×n of n × n matrices with
coefficients in F?
(a) symmetric matrices (A = At), (b) invertible matrices, (c) upper triangular matrices

Solution.

(a) This is a subspace, since if A,B are two symmetric matrices then the identities

(A+B)t = At +Bt = A+B

and
(cA)t = c(At) = cA

show that the subset is closed under addition and scalar multiplication.

(b) This is not a subspace, since for any invertible matrix A, the zero matrix 0A has all entries
zero, hence determinant zero, hence not invertible and so it is not closed under scalar
multiplication.

(c) This is a subspace, as adding two upper triangular matrices keeps the matrix upper triangular,
and multiplying every entry of an upper triangular matrix by a scalar also keeps the matrix
upper triangular.
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§3 - Bases and Dimension

3.1

Find a basis for the space of n× n symmetric matrices (At = A).

Solution.
Since symmetric matrices are, as the name suggests, symmetric along the diagonal, one such
basis is the set

{eij + eji | 1 ≤ i ≤ j ≤ n}

Every symmetric matrix can be written uniquely as a linear combination of these matrices, so
by Prop 3.4.14 the set forms a basis.

3.2

Let W ⊂ R4 be the space of solutions of the system of linear equations AX = 0, where

A =

[
2 1 2 3
1 1 3 0

]
. Find a basis for W .

Solution.
We can row reduce A to A′:

A =

[
2 1 2 3
1 1 3 0

]
→
[
1 1 3 0
2 1 2 3

]
→
[
1 1 3 0
0 −1 −4 3

]
→
[
1 0 −1 3
0 1 4 −3

]
= A′

so that AX = 0 if and only if A′X = 0. Hence we have system

A′X = 0 ⇐⇒

{
x1 − x3 + 3x4 = 0

x2 + 4x3 − 3x4 = 0
⇐⇒

{
x1 = x3 − 3x4

x2 = −4x3 + 3x4

⇐⇒ X =


x3 − 3x4

−4x3 + 3x4
x3
x4

 =


1
−4
1
0

x3 +

−3
3
0
1

x4

⇐⇒ X ∈ span




1
−4
1
0

 ,

−3
3
0
1


 =: span {b1, b2}

Furthermore, b1, b2 are linearly independent since

0 = α1b1 + α2b2 =


α1 − 3α2

−4α1 + 3α2

α1

α2

 =⇒ α1 = α2 = 0

Hence {b1, b2} is a basis of W .
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3.3

Prove that the three functions x2, cosx, and ex are linearly independent.

Solution.

Proof.
Suppose there exists α, β, γ ∈ R such that f(x) = αx2 + β cosx+ γex is the zero function.
Then we have 

0 = f(0) = β + γ

0 = f(π/2) = απ2

4 + γeπ/2

0 = f(3π/2) = α9π2

4 + γe3π/2

Multiplying the second equation by −9 and adding it to the third equation gives

0 = (α9π2

4 + γe3π/2)− 9(απ2

4 + γeπ/2) = γ(e3π/2 − 9eπ/2︸ ︷︷ ︸
̸= 0

) =⇒ γ = 0

Hence substituting back into the first equation gives β = 0 and back into the second equation
gives α = 0. Therefore our original functions are linearly independent.

3.4

Let A be an m× n matrix, and let A′ be the result of a sequence of elementary row operations on A.
Prove that the rows of A span the same space as the rows of A′.

Solution.

Proof.
By induction it suffices to show the case where A′ = EA is a single elementary row operation.
We consider cases:

• If E swaps two rows, then clearly both matrices have the same row space.

• If E replaces row Ri with Ri + αRj , then we can rewrite any linear element in the row
span of A as

β1R1 + · · ·+ βiRi + · · ·+ βjRj + · · ·+ βmRm

= β1R1 + · · ·+ βi(Ri + αRj) + · · ·+ (βj − αβi)Rj + · · ·+ βmRm

which is in the row span of A′, and clearly vice versa, thus the two row spans are the same.

• If E scales row Ri by a nonzero α, then we can rewrite any element in the row span of A as

β1R1 + · · ·+ βiRi + · · ·+ βmRm = β1R1 + · · ·+ βi
α
(αRi) + · · ·+ βmRm

which is in the row span of A′, and clearly vice versa, thus the two row spans are the same.

This is all possible cases of E, therefore the row space is unchanged under elementary row
operations.
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3.5

Let V = Fn be the space of column vectors. Prove that every subspace W of V is the space of
solutions of some system of homogeneous linear equations AX = 0.

Solution.

Proof.
Let W be a subspace of Fn. Since Fn is finite-dimensional, we have W finite-dimensional (say
dimW = m) and so there exists a basis w1, . . . , wm of W . If m = n, then by Prop 3.4.23 we
have W = V and we can take A to be the zero matrix. Otherwise we may assume m < n and
since the vectors w1, . . . , wm are linearly independent in Fn, by Prop 3.4.16 we can add vectors
vm+1, . . . , vn to our original basis to create a basis of Fn, and by Prop 3.4.14 we can correspond
each X ∈ Fn to its unique coefficients α1, . . . αn such that

X = α1w1+· · ·+αmwm+αm+1vm+1+· · ·+αnvn =
[
w1 . . . wm vm+1 . . . vn

] α1

...
αn

 =: PΛX

Note that P is invertible by Exercise 3.8, so we in fact have a coefficient map X 7→ P−1X. We
have again by Prop 3.4.14 that any X ∈W has a unique representation as a linear combination
of w1, . . . , wm, and by the uniqueness of ΛX , this means that

X ∈W ⇐⇒ αm+1 = · · · = αn = 0

Hence if we construct the (n−m)× n matrix A to be the last (n−m) rows of P−1 and B to be

the first m rows (i.e. P−1 =

[
B
A

]
), we have

AX = 0 ⇐⇒

α1

...
αn

 = ΛX = P−1X =

[
BX
0

]
⇐⇒ αm+1 = · · · = αn = 0 ⇐⇒ X ∈W

[NB: In the second line we implicitly use the fact that we can always find a basis of a finite-
dimensional vector (sub)space, which is not a stated result by Artin at this point, but follows
from the procedure in the proof of Prop 3.4.23 of iteratively pulling vectors not in the span of
the previous. What we want is actually found in the appendix (Prop A.3.3), but it is the more
general version that includes infinite-dimensional vector spaces and hence needs the Axiom of
Choice, but in the finite case of Fn, no choice is needed in proving existence of a basis.]
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3.6

Find a basis of the space of solutions in Rn of the equation

x1 + 2x2 + 3x3 + · · ·+ nxn = 0

Solution.
Let S ⊂ Rn be the space of solutions of the above equation. Note that we have a system of one
equation in n variables, which gives us n− 1 degrees of freedom. We can write

x1 = −2x2 − 3x3 − · · · − nxn

and so we have

X ∈ S ⇐⇒ X =


x1
x2
x3
...
xn

 =


−2x2 − 3x3 − · · · − nxn

x2
x3
...
xn

 =


−2
1
0
...
0

x2 +

−3
0
1
...
0

x3 + · · ·+


−n
0
0
...
1

xn

Hence we have

S = span




−2
1
0
...
0

 ,

−3
0
1
...
0

 , . . . ,

−n
0
0
...
1




These vectors are also linearly independent since

0 = α1


−2
1
0
...
0

+ · · ·+ αn−1


−n
0
0
...
1

 =


−2α1 − · · · − nαn−1

α1

α2

...
αn−1

 =⇒ α1 = · · · = αn−1 = 0

Therefore these vectors are a basis of S.
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3.7

Let (X1, . . . , Xm) and (Y1, . . . , Yn) be bases for Rm and Rn, respectively. Do the mn matrices XiY
t
j

form a basis for the vector space Rm×n of all m× n matrices?

Solution.
We claim yes.

Proof.
Let A be an m× n matrix. Note that if we write row-wise

A =

R
t
1
...
Rt

m


then each Rk ∈ Rn can be written uniquely as a linear combination of (Y1, . . . , Yn), say

Rk = αk
1Y1 + · · ·+ αk

nYn

Hence we have

A =


∑n

j=1 α
1
jY

t
j∑n

j=1 α
2
jY

t
j

...∑n
j=1 α

m
j Y

t
j

 =


∑n

j=1 α
1
jY

t
j

0
...
0

+


0∑n

j=1 α
2
jY

t
j

...
0

+ · · ·+


0
0
...∑n

j=1 α
m
j Y

t
j



=


n∑

j=1

α1
j


Y t
j

0
...
0


+


n∑

j=1

α2
j


0
Y t
j
...
0


+ · · ·+


n∑

j=1

αm
j


0
0
...
Y t
j




=

 n∑
j=1

α1
je1Y

t
j

+

 n∑
j=1

α2
je2Y

t
j

+ · · ·+

 n∑
j=1

αm
j emY

t
j


=

m∑
k=1

n∑
j=1

αk
j ekY

t
j

since ekY t
j is the m× n matrix whose kth row is Yj and zeros elsewhere. However, note each ek

is an element of Rm, so it can be written uniquely as a linear combination of (X1, . . . , Xm), say

ek = βk1X1 + · · ·+ βkmXm

Thus we have

A =
m∑
k=1

n∑
j=1

αk
j ekY

t
j =

m∑
k=1

n∑
j=1

αk
j

(
m∑
i=1

βki Xi

)
Y t
j =

m∑
k=1

n∑
j=1

m∑
i=1

αk
jβ

k
i XiY

t
j

We can rearrange this sum by fixing a value of i and j, in which case we vary k and have terms
α1
jβ

1
iXiY

t
j + · · ·+ αm

j β
m
i XiY

t
j . Hence

A =

m∑
k=1

n∑
j=1

m∑
i=1

αk
jβ

k
i XiY

t
j =

m∑
i=1

n∑
j=1

(
m∑
k=1

αk
jβ

k
i

)
XiY

t
j =:

m∑
i=1

n∑
j=1

γi,jXiY
t
j
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Therefore A is in the span of the XiY
t
j matrices.

To show linear independence, suppose that

m∑
i=1

n∑
j=1

δi,jXiY
t
j

is equal to the zero matrix. Then for any vector v ∈ Rn, we have

0 =

 m∑
i=1

n∑
j=1

δi,jXiY
t
j

 v =
m∑
i=1

n∑
j=1

δi,jXi(Y
t
j v) =

m∑
i=1

 n∑
j=1

δi,j(Y
t
j v)

Xi

Since the basis (X1, . . . , Xm) is linearly independent, this forces each
∑n

j=1 δi,j(Y
t
j v) = 0. Setting

zi =
n∑

j=1

δi,jYj ∈ Rn,

this means we have ztiv = 0 for every vector v ∈ Rn. In particular, ∥zi∥2 = ztizi = 0 for every i,
but only the zero vector in Rn has length zero, so we have zi = 0 for every i. Hence by linear
independence of (Y1, . . . , Yn) we have

0 = zi =

n∑
j=1

δi,jYj =⇒ δi,1 = · · · = δi,n = 0

This is true for every i, so δi,j = 0 for all i, j, thus the XiY
t
j matrices are linearly independent

and therefore form a basis for m× n matrices.
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3.8

Prove that a set (v1, . . . , vn) of vectors in Fn is a basis if and only if the matrix obtained by
assembling the coordinate vectors of vi is invertible.

Solution.

Proof.
=⇒ : Suppose that (v1, . . . , vn) is a basis of Fn. Write the n× n matrix

M =
[
v1 . . . vn

]
By linear independence, the zero vector can be written as a linear combination of (v1, . . . , vn) in
just one way. This implies that MX = 0 has only the solution X = 0, which by Theorem 1.2.21
implies M is invertible.

⇐= : Suppose that M = [v1 . . . vn] is invertible.
First note that we can reduce M to the identity I = [e1 . . . en]. By Exercise 3.4, M has the
same span as I, and so span {v1, . . . , vn} = span {e1, . . . , en} = Fn.
Next, for linear independence suppose that α1v1 + · · ·+αnvn = 0. Note that we can rewrite this

0 = α1v1 + · · ·+ αnvn =
[
v1 . . . vn

] α1

...
vn

 =MΛ

and since M is invertible, we have Λ = M−10 = 0, thus α1 = · · · = αn = 0 and the vectors
v1, . . . , vn are linearly independent.
Therefore (v1, . . . , vn) is a basis of Fn.
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§4 - Computing with Bases

4.1

(a) Prove that the set B = ((1, 2, 0)t, (2, 1, 2)t, (3, 1, 1)t) is a basis of R3.

(b) Find the coordinate vector of the vector v = (1, 2, 3)t with respect to this basis.

(c) Let B′ = ((0, 1, 0)t, (1, 0, 1)t, (2, 1, 0)t). Determine the basechange matrix P from B to B′.

Solution.

(a) Proof.
By Exercise 3.8 it suffices to show that B is invertible for

B =

1 2 3
2 1 1
0 2 1


and indeed detB = 7 ̸= 0, so B−1 exists and B is a basis.

(b) We want to find α1, α2, α3 such that

v =

12
3

 = α1

12
0

+ α2

21
2

+ α3

31
1

 =

1 2 3
2 1 1
0 2 1

α1

α2

α3


Hence we haveα1

α2

α3

 = B−1v =

1 2 3
2 1 1
0 2 1

−1 12
3

 =
1

7

−1 4 −1
−2 1 5
4 −2 −3

12
3

 =

 4/7
15/7
−9/7


which is our new coordinate vector.

(c) By definition, we want to find a matrix P such that B′ = BP . Hence we have

P = B−1B′ =
1

7

−1 4 −1
−2 1 5
4 −2 −3

0 1 2
1 0 1
0 1 0

 =
1

7

4 −2 2
1 3 −3
2 1 6


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4.2

(a) Determine the basechange matrix in R2, when the old basis is the standard basis E = (e1, e2)
and the new basis is B = (e1 + e2, e1 − e2).

(b) Determine the basechange matrix in Rn, when the old basis is the standard basis E and the new
basis is B = (en, en−1, . . . , e1).

(c) Let B be the basis of R2 in which v1 = e1 and v2 is a vector of unit length making an angle of
120◦ with v1. Determine the basechange matrix that relates E to B.

Solution.

(a) Since P satisfies B = EP and the matrix representation of E is
[
1 0
0 1

]
= I, we have

P =

[
1 1
1 −1

]
.

(b) Again, E = I, so P is simply the matrix representation of B:

P =


0 0 . . . 1
...

... . .
.

0
0 1 . . . 0
1 0 . . . 0


(c) To find the matrix representation of B, we have the following setup:

x

y

v1 = (1, 0)t

v2

120◦

Hence using unit circle trigonometry we have v2 = (− cos(π/3), sin(π/3))t = (−1/2,
√
3/2)t

and P = [v1 v2] =

[
1 −1/2

0
√
3/2

]
.
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4.3

Let B = (v1, . . . , vn) be a basis of a vector space V . Prove that one can get from B to any other
basis B′ by a finite sequence of steps of the following types:

(i) Replace vi by vi + avj , i ̸= j, for some a in F .

(ii) Replace vi by cvi for some c ̸= 0.

(iii) Interchange vi and vj .

Solution.

Proof.
Let B = [v1 . . . vn] be the matrix representation of B, and similarly B′ for B′. Then by Exercise
3.8, both B and B′ are invertible, so we can perform column operations on both to reduce them
to the identity:

I = BE1 . . . Em = B′F1 . . . Fn =⇒ B′ = B(E1 . . . Em)(F1 . . . Fn)
−1

Note that (F1 . . . Fn)
−1 = F−1

n . . . F−1
1 are all still elementary matrices, so the column operations

B(E1 . . . Em)(F1 . . . Fn)
−1 each do one of (i), (ii), or (iii) depending on what elementary operation

each matrix represents since each column is a vector in the basis. Hence we can get the vectors
in B′ from B in m+ n steps.

4.4

Let Fp be a prime field, and let V = F2
p. Prove:

(a) The number of bases of V is equal to the order of the general linear group GL2(Fp).

(b) The order of the general linear group GL2(Fp) is p(p+ 1)(p− 1)2, and the order of the special
linear group SL2(Fp) is p(p+ 1)(p− 1).

Solution.

Proof.

(a) By Exercise 3.8, B = (v1, v2) is a basis if and only if B = [v1 v2] is invertible. Hence there is
a correspondence between a basis of V and an invertible matrix in GL2(Fp), which implies
the number of bases is the order of GL2(Fp).

(b) By (a), it suffices to first find the number of bases of V . First, we need a nonzero vector
v = (v1, v2) ∈ F2

p, which gives p2 − 1 possibilities. Next, we need to choose another vector
w = (w1, w2) not in the span of v, i.e. w ≠ k · v for k = 0, 1, . . . , p, which gives p2 − p possi-
bilities. Thus the number of bases is (p2−1)(p2−p) = (p−1)(p+1)(p−1)p = p(p+1)(p−1)2.

Next, note the determinant map det : GL2(Fp) → F×
p is a surjective homomorphism (since

det(AB) = (detA)(detB)) with kernel SL2(Fp), so by Corollary 2.8.13

|GL2(Fp)| = |SL2(Fp)|·|F×
p | =⇒ |SL2(Fp)| =

|GL2(Fp)|
|F×

p |
=
p(p+ 1)(p− 1)2

p− 1
= p(p+1)(p−1)
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4.5

How many subspaces of each dimension are there in (a) F3
p, (b) F4

p?

Solution.
We more generally want to investigate the number of k-dimensional subspaces in Fn

p , which we
will denote #(k, n). The idea is to first find the number of linearly independent (v1, . . . , vk) and
divide that by the number of bases of Fk

p to account for different vector collections generating
the same k-dimensional subspace (which are all isomorphic to Fk

p by Corollary 3.5.5).

By the same reasoning as Exercise 4.4(b), to generate k linearly independent (v1, . . . , vk), we
need to start with a nonzero vector v1 ∈ Fn

p , which has pn − 1 possibilities. Our next vector
needs to not be in the span of v1, i.e. v2 ̸= k1v1 for k1 ∈ Fp, which gives pn − p possibilities.
Similarly, v2 ̸= k1v1 + k2v2 for k1, k2 ∈ Fp, so we have pn − p2 possibilities. Thus there are
(pn − 1)(pn − p) . . . (pn − pk−1) many collections of k linearly independent vectors. Next, there
are (pk − 1)(pk − p) . . . (pk − pk−1) many bases of Fk

p by this same counting argument. Therefore
the number of k-dimensional subspaces in Fn

p is

#(k, n) =
(pn − 1)(pn − p) . . . (pn − pk−1)

(pk − 1)(pk − p) . . . (pk − pk−1)

for 0 < k < n and we set #(0, n) = #(n, n) = 1.
We now consider our original cases:

(a) n = 3: We have

• k = 0: #(0, 3) = 1

• k = 1: #(1, 3) =
p3 − 1

p− 1
= p2 + p+ 1

• k = 2: #(2, 3) =
(p3 − 1)(p3 − p)

(p2 − 1)(p2 − p)
=

(p− 1)(p2 + p+ 1)p(p− 1)(p+ 1)

(p− 1)(p+ 1)p(p− 1)
= p2 + p+ 1

• k = 3: #(3, 3) = 1

(b) n = 4: We have

• k = 0: #(0, 4) = 1

• k = 1: #(1, 4) =
p4 − 1

p− 1
= p3 + p2 + p+ 1

• k = 2: #(2, 4) =
(p4 − 1)(p4 − p)

(p2 − 1)(p2 − p)
=

(p2 − 1)(p2 + 1)p(p3 − 1)

(p2 − 1)p(p− 1)
= (p2 + 1)(p2 + p+ 1)

• k = 3: #(3, 4) =
(p4 − 1)(p4 − p)(p4 − p2)

(p3 − 1)(p3 − p)(p3 − p2)
= p3 + p2 + p+ 1

• k = 4: #(4, 4) = 1
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§5 - Direct Sums

5.1

Prove that the space Rn×n of all n × n real matrices is the direct sum of the space of symmetric
matrices (At = A) and the space of skew-symmetric matrices (At = −A).

Solution.

Proof.
Let SYM be the set of symmetric matrices and SKW be the set of skew-symmetric matrices.
By Prop 3.6.6(c) it suffices to show SYM ∩ SKW = {0} and SYM + SKW = Rn×n.
First note

SYM ∩ SKW = {A ∈ Rn×n | A = At = −A}
= {A ∈ Rn×n | aij = −aij ∀i, j}
= {A ∈ Rn×n | aij = 0 ∀i, j}
= {0}

Thus we want to show every matrix A ∈ Rn×n can be decomposed into a sum of symmetric and
skew-symmetric matrices. Consider the matrices B and C where

bij =
1
2(aij + aji) and cij =

1
2(aij − aji)

Then note that
bji =

1
2(aji + aij) =

1
2(aij + aji) = bij =⇒ B ∈ SYM

cji =
1
2(aji − aij) = −1

2(aij − aji) = −cij =⇒ C ∈ SKW

bij + cij =
1
2((aij + aji) + (aij − aji)) = aij =⇒ B + C = A

Thus A ∈ SYM + SKW , and therefore SYM ⊕ SKW = Rn×n.
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5.2

The trace of a square matrix is the sum of its diagonal entries. Let W1 be the space of n×n matrices
whose trace is zero. Find a subspace W2 so that Rn×n =W1 ⊕W2.

Solution.
We claim W2 = ZI = {kI | k ∈ Z}.

Proof.
The only scalar multiple of I with trace zero is the zero matrix, so we have W1 ∩ ZI = {0}.
Thus by Prop 3.6.6(c) it suffices to show W1 + ZI = Rn×n. Let A be an n × n matrix and
consider the matrices kI and B where

k =
1

n

n∑
i=1

aii =
1

n
tr(A) and bij =

{
aij if i ̸= j

aij − k if i = j

Then clearly kI ∈ ZI and

tr(B) =

n∑
i=1

bii =

n∑
i=1

(aii − k) =

(
n∑

i=1

aii

)
− nk = tr(A)− n( 1n tr(A)) = 0 =⇒ B ∈W1

Furthermore,

[kI +B]ij =

{
0 + aij = aij if i ̸= j

k + (aij − k) = aij if i = j
=⇒ kI +B = A

Therefore A ∈W1 + ZI and Rn×n =W1 ⊕ ZI.

5.3

Let W1, . . . ,Wk be subspaces of a vector space V , such that V =
∑
Wi. Assume that W1 ∩W2 = 0,

(W1 +W2) ∩W3 = 0, . . . , (W1 +W2 + · · ·+Wk−1) ∩Wk = 0. Prove that V is the direct sum of the
subspaces W1, . . . ,Wk.

Solution.

Proof.
Since we are given that V = W1 + · · · + Wk, all we have to show is that W1, . . . ,Wk are
independent. We induct on k.
The base case is k = 2 and follows from Prop 3.6.6(b) since we are given W1 ∩W2 = {0}. Now
assume that W1, . . . ,Wk−1 are independent and suppose that w1 + · · · + wk = 0 for wi ∈ Wi.
Note that

−wk = w1 + · · ·+ wk−1 ∈W1 + · · ·+Wk =⇒ −wk ∈ (W1 + · · ·+Wk−1) ∩Wk = {0}
=⇒ −wk = 0

=⇒ wk = 0

Hence we have w1 + · · · + wk−1 = 0. But by IH we have W1, . . . ,Wk−1 independent and so
w1 = · · · = wk−1 = 0. Therefore every wi is zero and W1, . . . ,Wk are independent.
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§6 - Infinite-Dimensional Spaces

6.1

Let E be the set of vectors (e1, e2, . . . ) in R∞, and let w = (1, 1, 1, . . . ). Describe the span of the set
(w, e1, e2, . . . ).

Solution.
We claim that

span {w, e1, e2, . . . } = ZR :=
⋃
x∈R

Zx

where Zx := {(a) ∈ R∞ | an = x for all but finitely many n}.

Proof.
First choose (a) ∈ span {w, e1, e2, . . . }. Then there exists a finite index set J such that

(a) = bw +
∑
j∈J

cjej

Then by construction of w, we have that an = b for all but finitely many n, namely for all n /∈ J .
Thus (a) ∈ Zb ⊂ ZR.
Next, choose (b) ∈ ZR. Then there exists x ∈ R such that bn = x for all but finitely many n. Let
J = {n ∈ N | bn ̸= x} and define cj = bj − x for all j ∈ J . Now x ·wj + cj = x · 1+ (bj − x) = bj
for all j ∈ J and so

(b) = xw +
∑
j∈J

cjej ∈ span {w, e1, e2, . . . }

Therefore we have both inclusions and span {w, e1, e2, . . . } = ZR.
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6.2

The doubly infinite row vectors (a) = (. . . , a−1, a0, a1, . . . ), with ai real form a vector space. Prove
that this space is isomorphic to R∞.

Solution.

Proof.
The very useful set-theoretic fact we need is that N and Z have the same cardinality. Indeed,
consider the bijection

f : N → Z, f(n) =

{
n
2 if n is even
−n−1

2 if n is odd

If we denote the set of doubly infinite row vectors by R±∞, then consider the map

φ : R∞ → R±∞

where given (a) ∈ R∞, we define φ(a)n = ag(n), where g = f−1. This map is bijective, namely
with inverse ψ(b)n = bf(n). Furthermore, note that for all n we have

φ(a+ b)n = (a+ b)g(n) = ag(n) + bg(n) = φ(a)n + φ(b)n =⇒ φ(a+ b) = φ(a) + φ(b)

and
φ(c · (a))n = (c · (a))g(n) = c · ag(n) = c · φ(a)n =⇒ φ(c · (a)) = c · φ(a)

Thus φ is a vector space isomorphism.
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6.3

For every positive integer, we can define the space ℓp to be the space of sequences such that∑
|ai|p <∞. Prove that ℓp is a proper subspace of ℓp+1.

Solution.

Proof.
This is really a question in analysis more than anything, but note that if we have a sequence
(a) ∈ ℓp, then

∞∑
n=1

|an|p <∞ =⇒ lim
n→∞

|an|p = 0

In particular, this means that there exists N > 0 such that |am|p < 1 for all m ≥ N and
∞∑

m=N

|am|p <∞. Furthermore, |am|p < 1 =⇒ |am| < 1 and so

∞∑
m=N

|am|p+1 =

∞∑
m=N

|am|p|am| <
∞∑

m=N

|am|p <∞

and clearly
∑N−1

n=1 |an|p+1 is finite, so we have
∑∞

n=1 |an|p+1 < ∞ and (a) ∈ ℓp+1, or in short,
ℓp ⊂ ℓp+1, and since both are vector spaces it is a subspace. Finally, to show it is proper we
need to find a sequence (a) ∈ ℓp+1 such that (a) /∈ ℓp. Consider the sequence

an =
1
p
√
n

Then
∞∑
n=1

|an|p =
∞∑
n=1

1

n
̸<∞ and

∞∑
n=1

|an|p+1 =

∞∑
n=1

1

n1+1/p
<∞

by the p-series test. Therefore ℓp is a proper subspace of ℓp+1.
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6.4

Let V be a vector space that is spanned by a countably infinite set. Prove that every independent
subset of V is finite or countably infinite.

Solution.

Proof.
Let V = span {v1, v2, . . . } and let S ⊂ V be an independent subset. Note that for every w ∈ S
and by definition of span, there exists a positive integer k such that w ∈ span {v1, v2, . . . , vk}.
Hence for every w ∈ S, define

kw := min{k ∈ N | w ∈ span {v1, v2, . . . , vk}}

We claim that for every K ∈ N, there are only finitely many w ∈ S such that kw = K.

To see this, choose K ∈ N and let SK = {w ∈ S | kw = K}. Note that SK ⊂ S is
the subset of an independent set, so it must also be independent. However, we also
have that S ⊂ span {v1, . . . , vK} is the subset of a finite-dimensional subspace, so by
Corollary 3.7.7, SK is finite.

Again since S ⊂ V = span {v1, v2, . . . }, we then have

S =
⋃
K∈N

{w ∈ S | kw = K}

which is a countable union of finite sets, therefore S is countable (finite or countably infinite).

[NB: For those worried about Axiom of Choice when defining kw, this definition only needs the
well-orderedness of N; it would be an issue if we were to choose a finite linear combination for
each x ∈ S, since the whole point is that we do not know a priori that S is countable.]
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Miscellaneous Problems

M.1

Consider the determinant function det : F 2×2 → F , where F = Fp is the prime field of order p and
F 2×2 is the space of 2 × 2 matrices. Show that this map is surjective, that all nonzero values of
the determinant are taken on the same number of times, but that there are more matrices with
determinant 0 than with determinant 1.

Solution.
First, for sujectivity note for any k ∈ F that

det

[
k 0
0 1

]
= k

Next, note that if we restrict our determinant to φ : GL2(F ) → F×, we have a surjective
homomorphism (as det(AB) = (detA)(detB)) with kernel SL2(F ), and so by Prop 2.7.15 we
have the inverse image φ−1(k) is the coset kSL2(F ). In particular, every coset has the same
number of elements and thus for every k ∈ F×,∣∣{detA = k}

∣∣ = ∣∣φ−1(k)
∣∣ = ∣∣kSL2(F )

∣∣ = ∣∣SL2(F )
∣∣ = ∣∣{detA = 1}

∣∣
and so every nonzero value of the determinant is taken on the same number of times.

Finally, we have from Exercise 4.4(b) that the order of GL2(Fp) is p(p + 1)(p − 1)2

and clearly the order of F 2×2 is p4, so the number of matrices with determinant 0 is∣∣{detA = 0}
∣∣ = p4 − |GL2(F )| = p4 − (p4 − p3 − p2 + p) = p3 + p2 − p

But we also have from Exercise 4.4(b) that the order of SL2(Fp) is p(p+ 1)(p− 1) and so∣∣{detA = 1}
∣∣ = |SL2(F )| = p3 − p < p3 − p+ p2 =

∣∣{detA = 0}
∣∣
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M.2

Let A be a real n× n matrix. Prove that there is an integer N such that A satisfies a nontrivial
polynomial relation AN + cN−1A

N−1 + · · ·+ c1A+ c0 = 0.

Solution.

Proof.
Note that we can consider the n× n matrix A as a vector in Rn2 , and so define the vector ak to
correspond to Ak. Then by Theorem 3.4.18 (more specifically, its contrapositive) we have that
any set of n2 +1 vectors in Rn2 must be linearly dependent, i.e. there exists a nontrivial relation

bn2+1an2+1 + · · ·+ b1a1 = 0

and let N be the largest index such that bN ̸= 0. Then we have

bNaN + · · ·+ b1a1 = 0

Finally set c0 = 0 and ci = bi
bN

for i = 1, . . . , N to get

0 = bNaN + bN−1aN−1 + · · ·+ b1a1

=
bN
bN
aN +

bN−1

bN
aN−1 + · · ·+ b1

bN
a1 + 0

= aN + cN−1aN−1 + · · ·+ c1a1 + c0

And since the zero vector corresponds to the zero matrix, this gives

AN + cN−1A
N−1 + · · ·+ c1A+ c0 = 0
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M.3

(a) Let x(t) and y(t) be quadratic polynomials with real coefficients. Prove that the image of the
path (x(t), y(t)) is contained in a conic, i.e., that there is a real quadratic polynomial f(x, y)
such that f(x(t), y(t)) is identically zero.

(b) Let x(t) = t2−1 and y(t) = t3− t. Find a nonzero real polynomial f(x, y) such that f(x(t), y(t))
is identically zero. Sketch the locus {f(x, y) = 0} and the path (x(t), y(t)) in R2.

(c) Prove that every pair x(t), y(t) of real polynomials satisfies some real polynomial relation
f(x, y) = 0.

Solution.

(a) Proof.
Note that any quadratic polynomial F (x, y) is of the form

F (x, y) = a+ bx+ cy + dx2 + ey2 + fxy

and our path components are of the form

x(t) = α1 + α2t+ α3t
2 and y(t) = β1 + β2t+ β3t

2

Hence when we plug these into F we get (as a polynomial in t)

F (x(t), y(t)) = a+ b(x(t)) + c(y(t)) + d(x(t))2 + e(y(t))2 + f((x(t)y(t))

= a+ b(α1 + α2t+ α3t
2) + c(β1 + β2t+ β3t

2) + d(α1 + α2t+ α3t
2)2

+ e(β1 + β2t+ β3t
2)2 + f([α1 + α2t+ α3t

2][β1 + β2t+ β3t
2])

= (a+ bα1 + cβ1 + dα2
1 + eβ21 + fα1β1)

+ t(bα2 + cβ2 + 2dα1α2 + 2eβ1β2 + f [α1β2 + α2β1])

+ t2(bα3 + cβ3 + d[2α1α3 + α2
2] + e[2β1β3 + β22 ] + f [α1β3 + α2β2 + α3β1])

+ t3(2dα2α3 + 2eβ2β3 + f [α2β3 + α3β2])

+ t4(dα2
3 + eα2

3 + fα3β3)

Hence to get F (x(t), y(t)) to be identically zero, we need to solve the system

a+ bα1 + cβ1 + dα2
1 + eβ21 + fα1β1 = 0

bα2 + cβ2 + 2dα1α2 + 2eβ1β2 + f [α1β2 + α2β1] = 0

bα3 + cβ3 + d[2α1α3 + α2
2] + e[2β1β3 + β22 ] + f [α1β3 + α2β2 + α3β1] = 0

2dα2α3 + 2eβ2β3 + f [α2β3 + α3β2] = 0

dα2
3 + eα2

3 + fα3β3 = 0

which is five equations in six unknowns (a, b, c, d, e, f), which will always have a solution and
thus such an F will always exist.
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(b) Note that y(t) = t(t2 − 1) = tx(t), so y2 = t2x2 = (x + 1)x2. Thus the polynomial
F (x, y) = y2 − (x+ 1)x2 should work. Indeed,

F (x(t), y(t)) = (t3 − t)2 − ((t2 − 1) + 1)(t2 − 1)2

= (t6 − 2t4 + t2)− t2(t4 − 2t2 + 1)

= 0

We now graph:

−1 −0.5 0.5 1 1.5

−1

1

−1 −0.5 0.5 1 1.5

−1

1

{F (x, y) = 0} (x(t), y(t))

And note the two are the exact same.

(c) Proof.
Let x(t) and y(t) be polynomials in t of degree n. Note that any polynomial F (x, y) of
degree m is a linear combination of

{1, x, y, x2, y2, xy, . . . , xm, xm−1y, . . . , xym−1, ym} = {xiyj | 0 ≤ i+ j ≤ m}

and hence F (x(t), y(t)) will be a polynomial in t of degree ≤ mn. Furthermore, we have

∣∣{xiyj | 0 ≤ i+j ≤ m}
∣∣ = ∣∣{(i, j) | i+j = k for k = 0, . . . ,m}

∣∣ = m∑
k=0

(k+1) =
1

2
[(m+1)(m+2)]

So we want the case, as in the proof of (a), of the polynomial F (x(t), y(t)) with ≤ mn+ 1
terms being less than the 1

2 [(m+ 1)(m+ 2)] coefficients we get in F (x, y). In other words,
given a fixed n, we want to find an m such that 1

2 [(m+ 1)(m+ 2)] > mn+ 1. Indeed, note

(m+ 1)(m+ 2)

2
> mn+ 1 ⇐⇒ m2 + 3m+ 2 > 2mn+ 2 ⇐⇒ m2 + (3− 2n)m > 0

which holds for any m > 2n− 3, say m = 2n− 2. Therefore every pair x(t), y(t) of degree-n
polynomials satisfy a nonzero degree-(2n− 2) polynomial relation F (x, y) = 0.
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M.4

Let V be a vector space over an infinite field F . Prove that V is not the union of finitely many
proper subspaces.

Solution.

Proof.
Suppose otherwise, i.e. there exists proper subspaces W1, . . . ,Wn such that V =W1 ∪ · · · ∪Wn.
Without loss of generality, let n be the smallest number of proper subspaces needed. Now choose
v1 ∈W1 such that v1 /∈W2 ∪ · · · ∪Wn. Note that v1 must exist since otherwise

W1 ⊂W2 ∪ · · · ∪Wn =⇒ V =W1 ∪W2 ∪ · · · ∪Wn =W2 ∪ · · · ∪Wn

which contradicts the minimality of n. Next choose v2 ∈ V \W1 (which is nonempty since W1 is
proper) and consider elements on the “line” L := {v1 + αv2 | α ∈ F}. Since this is a subset of V ,
it must intersect some Wi. We consider cases:

• i = 1: Note that if there exists a nonzero α ∈ F such that v1 + αv2 ∈W1, then

αv2 = (v1 + αv2)− v1 ∈W1 =⇒ v2 = α−1(αv2) ∈W1

which is impossible. Thus L ∩W1 = {v1} (as v1 ∈ L when we take α = 0).

• i ≥ 2: Note that if L ∩Wi has at least two elements, then there exists distinct elements
α, β ∈ F such that

v1 + αv2, v1 + βv2 ∈Wi =⇒ (α− β)v2 = (v1 + αv2)− (v1 + βv2) ∈Wi =⇒ v2 ∈Wi

and
v2 ∈Wi =⇒ αv2 ∈Wi =⇒ v1 = (v1 + αv2)− (αv2) ∈Wi

Hence v1 ∈ Wi for some i ≥ 2, which is impossible. Therefore L ∩Wi can have at most
one element for all i ≥ 2.

Thus we have

L = L ∩ V =

n⋃
i=1

L ∩Wi

which is a finite union of finite (specifically of order ≤ 1) sets, so L is finite. However, note that
since F is infinite, L must be infinite. Therefore we have a contradiction and so V is not a finite
union of proper subspaces.
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M.5

Let α be the real cube root of 2.

(a) Prove that (1, α, α2) is an independent set over Q, i.e., that there is no relation of the form
a+ bα+ cα2 = 0 with integers a, b, c.
Hint: Divide x3 − 2 by cx2 + bx+ a.

(b) Prove that the real numbers a+ bα+ cα2 with a, b, c in Q form a field.

Solution.

(a) Proof.
Suppose otherwise, i.e. we can find rational numbers p1

q1
, p2q2 ,

p3
q3

(not all zero) such that
p1
q1

+ p2
q2
α+ p3

q3
α2 = 0. Since we can simply clear out all the denominators by multiplying by

q1q2q3, without loss of generality we may assume a+ bα+ cα2 = 0 for integers a, b, c not all
zero. Furthermore, note that if c = 0, then we have

bα+ a = 0 =⇒ α = −a
b
∈ Q

which is impossible and so c ̸= 0.
Thus we have α as a root of the polynomial f(x) = cx2 + bx+ a, along with g(x) = x3 − 2
by construction. We now perform polynomial division, i.e. write g(x) = q(x)f(x) + r(x) for
polynomials q and r. In particular we get

q(x) =
1

c
x− b

c2
and r(x) =

(
b2

c2
− a

c

)
x+

(
ab

c2
− 2

)
=: Ax+B

Note that if we plug in x = α we get

0 = g(α) = q(α) · f(α) + r(α) = q(α) · 0 + r(α) = r(α)

But
r(α) = 0 =⇒ Aα+B = 0 =⇒ α = −B

A
∈ Q or A = 0

and since α ∈ Q is impossible, this forces A = 0 and so B = 0 also. Then

A = 0 =⇒ b2

c2
− a

c
= 0 =⇒ b2 − ac = 0 =⇒ a =

b2

c

Now

B = 0 =⇒ a
b

c2
− 2 = 0 =⇒ b3

c3
= 2 =⇒ α =

b

c
∈ Q

which is a contradiction, so our assumption is false and therefore (1, α, α2) is independent.
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(b) Proof.
First note that with addition

(a+ bα+ cα2) + (x+ yα+ zα2) = (a+ x) + (b+ y)α+ (c+ z)α2

clearly we have closure, associativity, commutativity, identity 0 + 0α+ 0α2, and inverses
(−a) + (−b)α+ (−c)α2. Next we turn to multiplication.
We have product

(a+ bα+ cα2)(x+ yα+ zα2) = ax+ ayα+ axα2 + bxα+ byα2 + bzα3 + cxα2 + cyα3 + czα4

= (ax+ 2bz + 2cy) + (ay + bx+ 2cz)α+ (az + by + cx)α2

From this we have closure, associativity, commutativity, and identity 1 + 0α+ 0α2. So all
we need to show is that we have multiplicative inverses. Given a+ bα+ cα2 ̸= 0, we want to
find x, y, z ∈ Q such that the above product is 1 + 0α+ 0α2, i.e. we have the system

ax+ 2bz + 2cy = 1

ay + bx+ 2cz = 0

az + by + cx = 0

↭

a 2c 2b
b a 2c
c b a

xy
z

 =

10
0

 (⋆)

Theorem 1.2.21 implies that (⋆) has a unique solution in Q if and only ifa 2c 2b
b a 2c
c b a

xy
z

 =

00
0

 (†)

only has the trivial solution in Q. Thus if (†) has a nontrivial solution, we havea 2c 2b
b a 2c
c b a

xy
z

 =

00
0

 =⇒ (a+ bα+ cα2)(x+ yα+ zα2) = 0 + 0α+ 0α2

and since we have a + bα + cα2 ≠ 0, this forces x + yα + zα2 = 0 for (x, y, z) ̸= (0, 0, 0),
which contradicts (a). Thus (⋆) will always have a solution in Q, and so (a+ bα+ cα2)−1

exists and therefore {a+ bα+ cα2 | a, b, c ∈ Q} is a field.
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M.6

My cousin Phil collects hot sauce. He has about a hundred different bottles on the shelf, and many
of them, Tabasco for instance, have only three ingredients other than water: chilis, vinegar, and salt.
What is the smallest number of bottles of hot sauce that Phil would need to keep on hand so that
he could obtain any recipe that uses only these three ingredients by mixing the ones he had?

Solution.
If we treat each recipe as a vector in R3 where each component is the amount of chilis, vinegar,
and salt respectively, then we are simply looking for a basis of R3, which will have 3 vectors.
Hence 3 bottles of hot sauce is the smallest number needed.
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