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§1 - FIELDS

1.1

Prove that the numbers of the form a + byv/2 where a and b are rational numbers form a subfield of C.

Solution.

Proof.
Denote Q[v/2] := {a + bv/2 | a,b € Q}. We check the definition of subfield of C that Artin gives,

i.e. closed under addition, subtraction, multiplication, and division as well as contains 1.
e For any a + bv/2, ¢ + dv/2 € Q[v/2], we have
(a+bV2) + (c+dv2) = (a+c) + (b+ d)V2 € QV2]

since a + ¢ € Q and b+ d € Q by closure of Q.

e For any a + bv/2 € Q[v/2], we have
—(a+bV2) = (—a) + (-b)V2 € Q[v?2]

since —a € Q and —b € Q by closure of Q.

e For any a + bv/2, ¢ + dv/2 € Q[v/2], we have
(a+bV2)(c+ dv2) = (ac + 2bd) + (ad + be)V2 € Q[V2]
since ac + 2bd € Q and ad + bc € Q.

e For any a + bv/2 € Q[v/2], we have

_ 1 a—bv/2 a—0bV/2 a —b
(a+b\/§) 1:a—l—b\/ﬁ.a—b\/iza2—2b2 - <a2—2b2)+(a2—2bQ>\/§eQ[\/§]

since ‘5 € Q and ﬁ € Q.
e Finally, we have 1 = 1+ 0v/2 € Q[v2].

Therefore Q[v/2] is a subfield of C. O




1.2
Find the inverse of 5 modulo p, for p = 7, 11, 13, and 17.

Solution.
We solve 5z =1 mod p.

(i) p="T7: We have table

Hence 57! = 8 in Fy3.

(iv) p = 17: We have table

x 01 2 3 45 6
52 mod7 |0 5 3 1 6 4 2
Hence 57! = 3 in Fr.
(ii) p = 11: We have table
x 01 2 345 6 7 89 10
bz mod11 [0 5 10 4 9 3 8 2 7 1 6
Hence 571 =9 in Fy;.
(iii) p = 13: We have table
x |01 2 3 4 5 6 7 9 10 11 12
52 mod13[0 5 10 2 7 12 4 9 1 6 11 3 8

11 12 13 14 15

16

z |01 2 3 4
3

5
5z mod 17 |0 5 10 15 8 13

Hence 57! = 7 in Fy7.

4 9 14 2 7
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1.3

Compute the product polynomial (z3 + 322 + 3z + 1)(2* + 423 + 622 + 42 + 1) when the coefficients
are regarded as elements of the field 7. Explain your answer.

Solution.
We have by the binomial theorem that

7
™ .
(1‘3+3l‘2+31‘+1)(1‘4+41‘3—|—6£L'2+4{L‘+1):(33‘-1-1)3(1‘—1—1)4:(1‘4-1)7:g <>JEZ
i
i=0

7) _ 7!

However, 7 divides (z = o=y fori=1,...,6, so we have

7 7 6 7 6
Z(i>xi:x7+1+z;(i>xi5x7+1+20$izw7+l

1=0 i=1

Thus the product is 27 + 1. More generally, (x + 1)? = 2P + 1 mod p for any prime p.




1.4

Consider the system of linear equations 6 =31 ja) _ 3.
2 6| |z 1

(a) Solve the system in F, when p = 5, 11, and 17.

(b) Determine the number of solutions when p = 7.

Solution.
|6 =3 R ES 13
Denote A = [2 6 ] , X = |:$2:| ,B = [1]
(a) We have A=! = 427! [_62 2] and so our solution is
o a6 313 .2t
X=A"'B=42 [_2 o 11 =427

Now we work modulo p for:

ep=>542"1=2"1=3 so

e p=11:42"1=9"1 =5 so0
_o-1]21] _ [10] _[6
X =42 [0 =501= g
e p=17: 4271 =8"1=15,s0

x—a ] =fi] =[]

(b) Note that det A =42 =0 mod 7, so A is not invertible. However, we can write our system

modulo 7: ( )
-1 =3 _ —(x1 + 322 _ 3 _
ax= 3 G x=fan i) = [ =2
So we have a solution iff 1 + 3z9 = —3 = 4. We can compute the table where each entry is

21 + 3x92 mod 7 to find our solutions:

CL‘l\.TQ 0 1 2 3 4 5 6
0 0 3 6 2 5 1 4
1 1 4 0 3 6 2 5
2 2 51 4 0 3 6
3 3 6 2 5 1 4 0
4 4 0 3 6 2 5 1
5 5 1 4 0 3 6 2
6 6 2 5 1 4 0 3

so we have solution set with 7 elements

el B Bl B ] 2] 3




1.5

Determine the primes p such that the matrix

1 2 0
A=1]10 3 -1
-2 0 2

is invertible, when its entries are considered to be in [F),.

Solution.
We have A is invertible in F), if and only if det A is not divisible mod p. Since det A = 10, in
this case A~! exists if and only if p # 2 and p # 5.




1.6
Solve completely the system of linear equations AX = 0 and AX = B, where

1 1 0 1
A=(1 0 1|, and B= -1
1 -1 -1 1

(a)in Q, (b)inFge, (c)inFs, (d)in Fr.

Solution.
Note that det A = 3. So if 3 is invertible in our field, then A is invertible and X = 0 is the only
solution to AX =0 and X = A~1B is the solution to AX = B. We can calculate

1 1 1 1 1
A'B=31|l2 -1 —-1||-1|=3"1]|2
-1 2 -1 |1 —4

Now we consider each field:

(a) In Q, we have 371 = % and so AX = 0 has the unique solution X = 0 and AX = B has the
unique solution X = [% % —%]t.

(b) In Fy, we have 3! =171 = 1 and so AX = 0 has the unique solution X =0 and AX = B
has the unique solution X = [1 0 O]t.

(¢) In F3, 3 =0 is not invertible so we need to manually inspect our systems. Note that

1 1 0 1 1 1 0 1 X1 + X2
AX =11 0 1 zo|l = |1 0 1| |z = T1 + T3
1 -1 -1 T3 1 2 2 €3 x1 + 229 + 223

Hence the system AX = 0 is really the equations

T1+x9=0
1 +2x3=0
T1 + 229 + 223 =0

We consider cases:

e If 1 =0, equation 1 forces o = 0 and equation 2 forces x3 = 0. This satisfies equation
3, so we have a solution.

e If 1 = 1, equation 1 forces zo = 2 and equation 2 forces x3 = 2. This satisfies equation
3, so we have a solution.

e If x1 = 2, equation 1 forces o = 1 and equation 2 forces x3 = 1. This satisfies equation
3, so we have a solution.

This exhausts all possible values of z1 € 3, so the system AX = 0 has three solutions
x=1[0 o0 o[t 2 2" [2 1 1]"
Next, the system AX = B is the equations

T+ =1

T+ 23 =2

Tl + 229 + 223 =1




We consider cases:
e If 1 = 0, equation 1 forces o = 1 and equation 2 forces x3 = 2. This does not satisfy
equation 3, so no solutions have x1 = 0.

e If 1 = 1, equation 1 forces o = 0 and equation 2 forces x3 = 1. This does not satisfy
equation 3, so no solutions have x; = 1.

e If 1 = 2, equation 1 forces o = 2 and equation 2 forces x3 = 0. This does not satisfy
equation 3, so no solutions have x1 = 2.

This exhausts all cases of x1, so AX = B has no solutions.

(d) In F7, we have 37! = 5 and so AX = 0 has the unique solution X = 0 and AX = B has the
. . t
unique solution X = [5 3 1]




1.7

By finding primitive elements, verify that the multiplicative group IE‘; is cyclic for all primes p < 20.

Solution.
We need to check the cases p =2, 3, 5, 7, 11, 13, 17, 19, i.e. find an element of order p — 1 in F;.

e p=2: Then FJ = {1} = (1) is clearly cyclic.
e p=3: We have F; = {1,2} = (2) is cyclic.
e p = 5: Note that

3=3"%x3=1%x3=3 mod5
32=3'%x3=3x3=4 mod5
3 =32%x3=4%x3=2 mod5
31=33%x3=2x3=1 mod5

Hence 3 has order 4 and so FZ = (3).
e p="7: We have

3=3"%x3=1%x3=3 mod7
32=3'x3=3x3=2 mod7
3=3"%x3=2x3=6 mod7
3*=33x3=6x3=4 mod7
P =3"%x3=4x3=5 mod7
36=3"%x3=5x3=1 mod7

Hence 3 has order 6 and so F5 = (3).
e p=11: We have

2=2"%2=1x2=2 mod 11
2=21%x2=2x2=4 mod 11
2=22x2=4x2=8 mod 11
2 =23%x22=8x4=10 mod 11
2 =2%23=10x8=3 mod 11
210 =28 x22=3x4=1 mod 11

Note that by Lagrange, 2 can only have orders of 1, 2, 5, and 10, so the above shows 2 has
order 10 and Fy§ = (2).




e p=13: We have

2=29%2=1x2=2 mod 13
2 =21%x2=2x2=4 mod 13
2 =22x2=4%x2=8 mod 13
2#=23%x2=8x2=3 mod 13
26 =94%x22=3x4=12 mod 13
212=923x22%x22=3%x3%x3=1 mod 13

Hence 2 does not have order 1, 2, 3, 4, or 6, so by Lagrange 2 must have order 12 and
ng) = (2).

e p=17: We have

3=3"%x3=1x3=3 mod 17
32=3'x3=3x3=9 mod 17
33=32x3=9%x3=10 mod 17
3*=3"%x3=10x3=13 mod 17
3P =3"x3=13x3=5 mod 17
P =3"%x33=5%x10=16 mod 17
30=3"%3"=5x5=8 mod 17
311 =30 %x3=8%x3=7 mod 17
36 =31 x3°=7x5=1 mod 17

Hence 3 does not have order 1, 2, 4, or 8, so by Lagrange 3 must have order 16 and
Fi7 = (3).

e p=19: We have

2=20%2=1x2=2 mod 19
2 =21%x2=2x2=4 mod 19
2=22%x2=4x2=8 mod 19
25 =23%x22=8x4=13 mod 19
26 =925%2=13x2=7 mod 19
2 =20x22=7%x4=9 mod 19
29 =28 x2=9%x2=18 mod 19
212 =96 26 =7x7=11 mod 19
213 =212 v 2=11x2=3 mod 19
218 =913« 25=3%x13=1 mod 19

Hence 2 does not have order 1, 2, 3, 6, or 9, so by Lagrange 2 must have order 18 and
IE‘1X9 = (2).

10




1.8

Let p be a prime integer.

(a) Prove Fermat’s Theorem: For every integer a, a’? = a modulo p.

(b) Prove Wilson’s Theorem: (p —1)! = —1 (modulo p).

(a)

Solution.

Proof.
If p | a, then we also have p | a? and so a? = a =0 mod p. Hence we may assume that p t a,
i.e. ged(p,a) = 1. Now note that p does not divide any element of F; = {1,2,...,p — 1}.
Hence for every b € F;,

pta, ptb = pfab
and so p does not divide any element of aIF; ={a,a2,...,a(p—1)}. Then for any ab € aIF;,
its remainder modulo p is an element of IF;, and in fact aIE“;; modulo p simply permutes the
elements of F;. To see this, note that

ab1 = aby = a(bl—bg)EO — p|(bl—b2)
But by,be € {1,...,p — 1} means that |b; — ba| < p, so the only multiple of p that b; — by
can be is zero and so b; — by = 0 gives b; = by. Hence the map
fo:Fy —=F,; brrab modp

is injective, and as a map between the same finite set, must also be surjective. Now taking
the product of all the elements in aIF;;, we have modulo p that

aPp—1) = H abEHb:(p—l)!

ab€a F;; bEIF;f
Therefore

A Tp—1D=@p-1)! modp = a?'=1 modp = e’ =a modp

Proof.
If p =2, then we have (2 —1)! =1 = —1 mod 2. Hence we may assume p > 2 is odd.
Let fi1(x) = 2P~! — 1. Note that modulo p, we have for any a € IF that

fila) =0 <= o’ '=1 < P =a

and the last is true by (a). Hence f; has roots 1,...,p — 1 modulo p.

Next, let fa(z) = (z —1)...(x — (p —1)). This also has roots 1,...,p — 1 modulo p, with
leading term zP~! and constant term (—1)(=2)...(=(p—1)) = (=1)P"L(p—-1)! = (p — 1)!
(since p is odd). However, now g(x) = fa(z) — fi(x) has degree p — 2 with p — 1 roots,
which forces g to be constantly zero (all of this modulo p). In particular its constant term
(p — 1!+ 1 is zero modulo p, and therefore

p—1!+1=0 modp = (p—1)!=-1 modp

[NB: The above proof relies on Lagrange’s Theorem (not the one about subgroup orders, but
one about polynomials with coefficients in Fp). One can more cleanly (i.e. without relying
on other results) prove Wilson’s theorem using a counting argument via pairing up elements
of IF,, with their inverses, but it does not use (a) unlike in the given proof.| O
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1.9

1] in the group GLy(Fr).

Determine the orders of the matrices F ﬂ and {2

Solution.
We have that

R E R P R

1 1 2 0
Hence [0 1] has order 7 and {0 1] has order 3.

1.10

. . Lo . 0 0] |1 0] (1 1| |0 1
Interpreting matrix entries in the field Fy, prove that the four matrices [0 0] , [O J , [1 O] , [1 1]

form a field.
Hint: You can cut the work down by using the fact that various laws are known to hold for addition
and multiplication of matrices.

Solution.

Proof.

We first denote our matrices

00 10 11 0 1
R P A B
We have closure of both addition and multiplication via the tables

+|Zz 1 A B x|Z I A B
Z|zZ I A B Z|z Z Z Z
1|1 Z B A I1(Z I A B
AlA B Z I AlZ A B I
B|B A I Z B|Z B I A

Furthermore, this also shows we have additive identity Z and multiplicative identity I, along with
the existence of inverses. By nature of matrix addition and multiplication we have associativity
of both operations and the distributive property holds. Finally, the tables show that both
operations are commutative, so we indeed have a field. O

12



1.11

Prove that the set of symbols {a + bi | a,b € F3} forms a field with nine elements, if the laws of
composition are made to mimic addition and multiplication of complex numbers. Will the same
method work for F5? For F7? Explain.

Solution.

More generally, we discuss for what primes p does C, := {a +bi | a,b € F),} form a field.
Addition is always fine (i.e. (C;,|r is always abelian), so multiplication is where we need to focus.
Indeed, since we are mimicking C we have

(a+ bi)(c+ di) = (ac — bd) + (ad + bc)i

Closure then follows from the closure of IF,, as a field, and associativity and commutativity follow
by construction. We have identity 1 + 0z, so all we need is existence of multiplicative inverses.
Recall that in C we have

1 a— bi

: : 2 12
(a+bi)(a—bi) =a"+b° = =

and so in C,, we have/need (a + bi)~! = (a — bi)(a® + b?)~!. Thus for any a,b # 0 we have
(a+bi)™' € C,exists <= (a?+b*)7! € Cp exists <= (a®> +V?) Z0€F, < p{(a®+1?)
and so C,, is a field if and only if (a®? + %) =0 mod p = a=0b=0.

With this characterization, we consider the cases originally given:

e p = 3: Consider the table where each entry is a? + b*> modulo 3:

a\b|0 1 2
0 0 1 1
1 1 2 2
2 1 2 2

Hence Cj is a field.

e p =5: We have table, now with each table modulo 5:

\'b

W N — Ol
e i) Nes)
N OO DN |
S W W O =N
S W WO =W
N OO N e

So C5 is not a field; from the table we can even state that, e.g., 1 + 2¢ has no inverse.

13



e p=T: Again, we have the table:

a\b|0 1 2 3 4 5 6
0 0 1 4 2 2 4 1
1 1 2 5 3 3 5 2
2 4 5 1 6 6 1 5
3 2 3 6 4 4 6 3
4 2 3 6 4 4 6 3
) 4 5 1 6 6 1 5
6 1 2 5 3 3 5 2

Hence C7 is a field.

[NB: Rather than computing the entire table and looking for zeros, we really only need to
compute the first row and then see if any two can be added to get 0 modulo p. In the case of
p =7, the only possible nonzero values are 1, 2, and 4, which cannot add to a multiple of 7 using
only two of the numbers and so we have a field; in the case of p = 5, we had values of 1 and 4
which can be added together to get 5 and so we do not have a field.|

14




§2 - VECTOR SPACES

2.1
(a) Prove that the scalar product of a vector with the zero element of the field F' is the zero vector.

(b) Prove that if w is an element of a subspace W, then —w is in W too.

Solution.

(a) Proof.
Let v € V be a vector in a vector space over F' and let 0 € V be the zero vector, i.e. the
additive inverse in V. Then note that by 0 € F being the additive identity and distributivity
in V we have

0v = (0+0)v =0v + Ov
0.

Hence by the cancellation law we have 0v = O

(b) Proof.
Let W C V be a subspace and w € W a vector. By (a), we have Ow = 0, and if —1 is the
additive inverse of 1 € F', then we have

(—Dw+w=(—Dw+ 1w = (-1+1)w=0w=0

which implies (—1)w = —w by uniqueness of inverses. Hence —w is a scalar multiple of w,
and therefore —w € W by closure. O

2.2

Which of the following subsets is a subspace of the vector space F™*" of n X n matrices with
coeflicients in F'7
(a) symmetric matrices (A = A?), (b) invertible matrices, (c) upper triangular matrices

Solution.

(a) This is a subspace, since if A, B are two symmetric matrices then the identities
(A+B)!=A"+B"'=A+B

and
(cA)t = c(A?) = cA

show that the subset is closed under addition and scalar multiplication.

(b) This is not a subspace, since for any invertible matrix A, the zero matrix 0A has all entries
zero, hence determinant zero, hence not invertible and so it is not closed under scalar
multiplication.

(c) This is a subspace, as adding two upper triangular matrices keeps the matrix upper triangular,
and multiplying every entry of an upper triangular matrix by a scalar also keeps the matrix
upper triangular.

15



§3 - BASES AND DIMENSION

3.1

Find a basis for the space of n x n symmetric matrices (A! = A).

Solution.
Since symmetric matrices are, as the name suggests, symmetric along the diagonal, one such

basis is the set

{eij+ej | 1<i<j<n}
Every symmetric matrix can be written uniquely as a linear combination of these matrices, so
by Prop 3.4.14 the set forms a basis.

3.2
Let W C R?* be the space of solutions of the system of linear equations AX = 0, where

2 1 2 3 . .
A—[l 1 3 0].F1ndaba81sfor Ww.

Solution.
We can row reduce A to A’

A—2123—>1130—>1130—>10_13—A'
11 30 21 2 3 0 -1 -4 3 01 4 -=3]

so that AX = 0 if and only if A’X = 0. Hence we have system

A,X:0<:>{l‘1—$3+3$4:0 <:>{x1::1:3—3334

To +4x3 —3x4 =0 To = —4x3 + 324
T3 — 3x4 1 -3
— X— —4x3 4+ 324 _ —4 s+ 3 -
I3 0
Ty 1

1
0
1 -3
—4 3
< X € span o =: span {by, ba}
1

Furthermore, b1, bo are linearly independent since

a1 — 30(2
—4
0= a1by + asby = C¥1a+3052 — a1 =as =0
1

a2

Hence {b1, b2} is a basis of W.

16



3.3

2

Prove that the three functions x, cos z, and e* are linearly independent.

Solution.

Proof.
Suppose there exists a, 3,7 € R such that f(z) = az? + Bcosx + ve® is the zero function.
Then we have

0= f(3r/2) = a% + ~e3m/2

Multiplying the second equation by —9 and adding it to the third equation gives

0= (a% + 763”/2) = 9(04%2 + 76”/2) = 7(63”/2 = 96”/2) = v=0

£0

Hence substituting back into the first equation gives § = 0 and back into the second equation

gives a = 0. Therefore our original functions are linearly independent. O
3.4

Let A be an m x n matrix, and let A’ be the result of a sequence of elementary row operations on A.
Prove that the rows of A span the same space as the rows of A’.

Solution.

Proof.
By induction it suffices to show the case where A’ = EA is a single elementary row operation.
We consider cases:

o If F swaps two rows, then clearly both matrices have the same row space.

o If I replaces row R; with R; + aRR;, then we can rewrite any linear element in the row
span of A as

PrRi+- -+ BiRi+ -+ BiRj+ -+ BnBm
=pRi+ -+ Bi(Ri+aRj)+---+ (B —aB)Rj+ -+ BnBm

which is in the row span of A’ and clearly vice versa, thus the two row spans are the same.

e If F scales row R; by a nonzero «, then we can rewrite any element in the row span of A as

Bi

which is in the row span of A’, and clearly vice versa, thus the two row spans are the same.

This is all possible cases of F, therefore the row space is unchanged under elementary row
operations. ]

17



3.5

Let V = F™ be the space of column vectors. Prove that every subspace W of V is the space of
solutions of some system of homogeneous linear equations AX = 0.

Solution.

Proof.

Let W be a subspace of F™. Since F"™ is finite-dimensional, we have W finite-dimensional (say
dim W = m) and so there exists a basis wy, ..., w,, of W. If m = n, then by Prop 3.4.23 we
have W =V and we can take A to be the zero matrix. Otherwise we may assume m < n and
since the vectors wy, ..., wy,, are linearly independent in F", by Prop 3.4.16 we can add vectors
Um1, - - - , U, tO our original basis to create a basis of F™, and by Prop 3.4.14 we can correspond
each X € I to its unique coeflicients aq, . .. a,, such that

aq
X = w4 -+ amWm+Qmt1Vmy1+ -+ apv, = [wl coo Wm Umtl .- vn] i | = PAx

Qo

Note that P is invertible by Exercise 3.8, so we in fact have a coefficient map X +— P~1X. We
have again by Prop 3.4.14 that any X € W has a unique representation as a linear combination
of wy, ..., wny, and by the uniqueness of Ax, this means that

XeW <<= apy1="=a,=0

Hence if we construct the (n —m) x n matrix A to be the last (n —m) rows of P~! and B to be

the first m rows (i.e. P71 = [i} ), we have

aq
AX =0 « | : :AX:P_lX:[

A

BX

0} = amr1 = =0, =0 XeWW

[NB: In the second line we implicitly use the fact that we can always find a basis of a finite-
dimensional vector (sub)space, which is not a stated result by Artin at this point, but follows
from the procedure in the proof of Prop 3.4.23 of iteratively pulling vectors not in the span of
the previous. What we want is actually found in the appendix (Prop A.3.3), but it is the more
general version that includes infinite-dimensional vector spaces and hence needs the Axiom of
Choice, but in the finite case of F™, no choice is needed in proving existence of a basis.| O

18



3.6

Find a basis of the space of solutions in R™ of the equation

1+ 2z +3x3+ - +nx, =0

Solution.
Let S C R™ be the space of solutions of the above equation. Note that we have a system of one
equation in n variables, which gives us n — 1 degrees of freedom. We can write

T, = —2T9 —3x3 — -+ — NIy
and so we have
[21] [—2x9 — 323 — -+ — nTy, | [—2] [—3] [—n]
T2 T2 1 0 0
| Zn | L B i | 0 | 0 | L 1 |
Hence we have o -
-2 -3 -n
1 0 0
S = span L], 0
L0 O] | 1 ]

These vectors are also linearly independent since

[—2] [—n] [—201 — - — nap—1]
1 0 (651
B 0 | L 1 | | Ap—1 |

Therefore these vectors are a basis of S.

19



3.7

Let (X1,...,X,,) and (Y1,...,Y,) be bases for R™ and R", respectively. Do the mn matrices XZ-th
form a basis for the vector space R™*™ of all m x n matrices?

Solution.
We claim yes.

Proof.
Let A be an m x n matrix. Note that if we write row-wise

Ry

A=

R,

then each Ry € R™ can be written uniquely as a linear combination of (Y1,...,Y,,), say
Ry, :a’leqL---qLozlen

Hence we have

Yo ¥l [Eia oY v s
Sr_ adY? 0 S alY! 0
A= |77 0 = . + 7T .
Yoyl L 0] 0 Y i1 95}
-
Dol Bl Fa Dot d il Fuss por
=1 : =1 - =1 :
0 0 v}
_ iale Yt . 2 Yt . m Yt
= jea¥f |+ [ D ddeay] |+ 4+ | D afenY]
j=1 j=1 j=1
m n
=) o]
k=1 j=1

since eijt is the m x n matrix whose kth row is Y} and zeros elsewhere. However, note each e,
is an element of R™, so it can be written uniquely as a linear combination of (X7, ..., X,,), say

ex = Bi X1+ + B Xm
Thus we have
m n m n m m n m
4= 353 ey =353 (35t ) 1 = 35S bt
k=1 j=1 k=1 j=1 i=1 k=1 j=1 i=1
We can rearrange this sum by fixing a value of ¢ and j, in which case we vary k and have terms
a}B}Xint FeeoF ag’lﬂf‘Xint. Hence

n m

m m n m m n
A= S ey =303 ( a?/ﬂf) Xitt = 303 XY
k=1

=1j=1 i=1 i=1 j=1 i=1 j=1
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Therefore A is in the span of the Xint matrices.
To show linear independence, suppose that

i Zn: 85 XY}
i=1 j=1

is equal to the zero matrix. Then for any vector v € R", we have

m n m n n
0= Z Z 5iijiY'jt V= Z Z 51"]'X¢(Y?’U) = Z 5ivj(ijtU) Xi
i 1

i=1 j=1 i=1 j=1 i=1 \ j=

Since the basis (X1, ..., X;,) is linearly independent, this forces each Z?:l o (thv) = 0. Setting

n
2 = Z 5i,j}/j € Rn,
j=1
this means we have z{v = 0 for every vector v € R™. In particular, ||2;> = 2!z; = 0 for every 1,
but only the zero vector in R™ has length zero, so we have z; = 0 for every 7. Hence by linear
independence of (Y7,...,Y,) we have

OIZZ':Z(SZ',]'Y} - (5,‘71:---:(51'”:0

’

j=1

This is true for every 4, so ; ; = 0 for all ¢, j, thus the X,-th matrices are linearly independent
and therefore form a basis for m x n matrices. O
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3.8

Prove that a set (vi,...,vy) of vectors in F" is a basis if and only if the matrix obtained by
assembling the coordinate vectors of v; is invertible.

Solution.
Proof.
— : Suppose that (vy,...,v,) is a basis of F". Write the n x n matrix
M = [vl vn]
By linear independence, the zero vector can be written as a linear combination of (vy,...,v,) in

just one way. This implies that M X = 0 has only the solution X = 0, which by Theorem 1.2.21
implies M is invertible.

<= Suppose that M = [v; ... v,] is invertible.

First note that we can reduce M to the identity I = [e; ... e,]. By Exercise 3.4, M has the
same span as I, and so span {vy,...,v,} =span{ey,...,e,} = F™.

Next, for linear independence suppose that ajv; + - - - + a,v, = 0. Note that we can rewrite this

aq
0=oqv1 + -+ apv, = [Ul Un] .| = MA
Un
and since M is invertible, we have A = M~10 = 0, thus oy = --- = o, = 0 and the vectors
V1,...,U, are linearly independent.
Therefore (vy,...,v,) is a basis of F". O]

22



§4 - COMPUTING WITH BASES
4.1
(a) Prove that the set B = ((1,2,0)%,(2,1,2)%,(3,1,1)!) is a basis of R3.
(b) Find the coordinate vector of the vector v = (1,2, 3)! with respect to this basis.

(c) Let B' = ((0,1,0),(1,0,1)%,(2,1,0)!). Determine the basechange matrix P from B to B’.

Solution.

(a) Proof.
By Exercise 3.8 it suffices to show that B is invertible for
1 2 3
B=12 11
0 2 1
and indeed det B = 7 # 0, so B~! exists and B is a basis.

(b) We want to find a1, ag, ag such that

1 1 2 3 1 2 3] [
v= |2 = 2 + o 1 + a3 1{=12 1 1 (6)
3 0 2 1 0 2 1| |as
Hence we have
a1 12 317N [ e -1 4/7
a| =B lv=|2 1 1 20 =22 1 52| = 15/7
o3 021 3 4 -2 -3] |3 —9/7

which is our new coordinate vector.

(¢) By definition, we want to find a matrix P such that B’ = BP. Hence we have

(-1 4 -1]fo1 2 1[4 -2 2
P:B”B’:? -2 1 5|1 01 - 1 3 -3
4 -2 =3/10 1 0 2 1 6
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(a) Determine the basechange matrix in R?, when the old basis is the standard basis E = (ej, e)
and the new basis is B = (e] + e2,e1 — €2).

(b) Determine the basechange matrix in R™, when the old basis is the standard basis E and the new
basis is B = (e, €n—1,...,€1)-

(c) Let B be the basis of R? in which v; = e; and vy is a vector of unit length making an angle of
120° with v;. Determine the basechange matrix that relates E to B.

Solution.

(a) Since P satisfies B = EP and the matrix representation of E is [1 0

0 1
1 1
=

(b) Again, E = I, so P is simply the matrix representation of B:

} = I, we have

0 0

—_

o O O

(c¢) To find the matrix representation of B, we have the following setup:

Y

V2

120°
—1 * T

V1 = (17 O)t

Hence using unit circle trigonometry we have vy = (— cos(/3),sin(7/3))! = (=1/2,1/3/2)!

and P = [v1 vy] = [(1) ;%g]
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4.3

Let B = (v1,...,v,) be a basis of a vector space V. Prove that one can get from B to any other
basis B’ by a finite sequence of steps of the following types:

(i) Replace v; by v; + avj, i # j, for some a in F.
(ii) Replace v; by cv; for some ¢ # 0.

(ili) Interchange v; and vj.

Solution.

Proof.

Let B = [v1 ... vy] be the matrix representation of B, and similarly B’ for B’. Then by Exercise
3.8, both B and B’ are invertible, so we can perform column operations on both to reduce them
to the identity:

I=BF,...En=BF . .F, = B =B(Ey...En)(F,...F,)"!

Note that (Fy...F,) 1 =F;1... Fr L are all still elementary matrices, so the column operations
B(E:...Ey)(F;...F,)! each do one of (i), (ii), or (iii) depending on what elementary operation
each matrix represents since each column is a vector in the basis. Hence we can get the vectors
in B’ from B in m + n steps. O

4.4

Let IF, be a prime field, and let V = IFIQ). Prove:
(a) The number of bases of V' is equal to the order of the general linear group G'La(F)).

(b) The order of the general linear group G L (F,) is p(p + 1)(p — 1)?, and the order of the special
linear group SLy(F,) is p(p+1)(p — 1).

Solution.

Proof.

(a) By Exercise 3.8, B = (v1,v2) is a basis if and only if B = [v; vs] is invertible. Hence there is
a correspondence between a basis of V' and an invertible matrix in G L2 (F,), which implies
the number of bases is the order of GLy(F,).

(b) By (a), it suffices to first find the number of bases of V. First, we need a nonzero vector
v = (v1,v2) € F;, which gives p? — 1 possibilities. Next, we need to choose another vector
w = (w1, ws) not in the span of v, i.e. w # k-v for k =0,1,...,p, which gives p? — p possi-
bilities. Thus the number of bases is (p>—1)(p*>—p) = (p—1)(p+1)(p—1)p = p(p+1)(p—1)%.

Next, note the determinant map det : GLa(F,) — I, is a surjective homomorphism (since
det(AB) = (det A)(det B)) with kernel SLy(FF,), so by Corollary 2.8.13
_ |GLy(Fp)| _ p(p+1)(p — 1)?

GLa(Fp)| = [SL2(Fp)|-| Fy | = |SLa(Fy)] il p— =p(p+1)(p—1)
p

O]
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4.5

How many subspaces of each dimension are there in (a) IF;’), (b) IE‘;?

Solution.

We more generally want to investigate the number of k-dimensional subspaces in F;;, which we
will denote #(k,n). The idea is to first find the number of linearly independent (vy, ..., vx) and
divide that by the number of bases of IF]; to account for different vector collections generating

the same k-dimensional subspace (which are all isomorphic to IF’; by Corollary 3.5.5).

By the same reasoning as Exercise 4.4(b), to generate k linearly independent (vy,...,vg), we
need to start with a nonzero vector v; € Fj;, which has p™ — 1 possibilities. Our next vector
needs to not be in the span of vy, i.e. vy # kiv;1 for k1 € F),, which gives p" — p possibilities.
Similarly, v # kjvi + kov for ki, ky € Fp, so we have p™ — p? possibilities. Thus there are
(p* —1)(p" —p) ... (p" — p*~1) many collections of k linearly independent vectors. Next, there
are (p¥ —1)(pF —p)... (p* — p*~!) many bases of IF’; by this same counting argument. Therefore
the number of k-dimensional subspaces in [} is

(" =1)E" —p)...(" —p")
(pF = 1)(p* —p) ... (pF —pk=1)

for 0 < k < n and we set #(0,n) = #(n,n) = 1.

We now consider our original cases:

#(kv n) =

(a) n =3: We have
o k=0: #(0,3) =1

o k=1 #(1,3)—];?__11—p2+p+1
R _@-1)@-p) _ -D@E+p+p-DE+1) _ ,
F=2 A = ) (p— 1)+ plp—1) —red
o k=3 #(3,3) =1
(b) n =4: We have

o k=0: #(0,4) =1

o k=1 #(1,4):1;411 _ Pt
4 4 2 2 3 _

D i R iy GRS AT
4 4 4 .2

o k=4 #(4,4) =1
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§5 - DIRECT SUMS

5.1
Prove that the space R™*™ of all n x n real matrices is the direct sum of the space of symmetric
matrices (A = A) and the space of skew-symmetric matrices (A' = —A).

Solution.

Proof.

Let SY M be the set of symmetric matrices and SKW be the set of skew-symmetric matrices.
By Prop 3.6.6(c) it suffices to show SYM N SKW = {0} and SYM + SKW = R"*".
First note

SYMNSKW ={AeR™™ | A=Al = —A}
= {A e R™" | A5 = —Q45 VZ,]}
= {A e R™" ‘ A5 = 0 VZ,]}
= {0}

Thus we want to show every matrix A € R"*™ can be decomposed into a sum of symmetric and
skew-symmetric matrices. Consider the matrices B and C' where

bij = g5(ai +aj) and ey = 5(ai; — aji)
Then note that
bj' = %(CL]‘Z‘ ol aij) = %(aij + ajz-) = bij — BeSYM

cji = (a5 — ai5) = —3(ai; — az) = —cij = C e SKW

bij + cij = 3((aij + azi) + (aij — aje)) =a; = B+C=A4

Thus A € SYM + SKW, and therefore SYM @& SKW = R™"*", O
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5.2

The trace of a square matrix is the sum of its diagonal entries. Let W7 be the space of n x n matrices
whose trace is zero. Find a subspace W5 so that R™*" = Wy & Wh.

Solution.
We claim Wy = ZI = {kI | k € Z}.

Proof.

The only scalar multiple of I with trace zero is the zero matrix, so we have W1 N ZI = {0}.
Thus by Prop 3.6.6(c) it suffices to show Wy + ZI = R"*". Let A be an n X n matrix and
consider the matrices kI and B where

1 & 1
k== ay==tr(4 d by =
n;a - r(A) an ; {

Then clearly kI € ZI and

Qi le#]
aij—k if’i:j

n

tr(B) = zn:bii = Z(aii —k)= (z": aii> —nk =tr(4) —n(itr(4) =0 = BeW;
=1l

i=1 i=1
Furthermore,
= an iy
kI + Bl = 4O+ % = % i) L yr1B=A
k—i—(aij—k):aij leZJ
Therefore A € W7 + ZI and R™*"™ = W; @ ZI. O
5.3

Let W1, ..., Wy be subspaces of a vector space V, such that V' = > W;. Assume that W3 N Wy = 0,
Wi+ Wo)NW3=0,...,(Wy + Wy + -+ Wj_1) N W), = 0. Prove that V is the direct sum of the
subspaces W1, ..., Wg.

Solution.

Proof.

Since we are given that V= Wy 4+ --- + Wy, all we have to show is that Wy,..., W} are
independent. We induct on k.

The base case is k = 2 and follows from Prop 3.6.6(b) since we are given W; N W5 = {0}. Now
assume that Wy, ..., Wy_1 are independent and suppose that wy + - -+ + wi = 0 for w; € W;.
Note that

—wp=w1+- - twg1 EWr -+ Wy, = —wpy€ Wi+ -+ Wi_1) N W, = {0}
= —wr =0
= wi =0

Hence we have wy + -+ + wg_1 = 0. But by IH we have W1,...,W;_; independent and so
wy; = -+ = wi_1 = 0. Therefore every w; is zero and W1,..., W are independent. ]
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§6 - INFINITE-DIMENSIONAL SPACES

6.1

Let E be the set of vectors (e1,eg,...) in R*, and let w = (1,1,1,...). Describe the span of the set
(w,eq,ea,...).

Solution.
We claim that

span{w,ey,e9,...} = Zg := U s
z€eR

where Z, := {(a) € R® | a,, = z for all but finitely many n}.

Proof.
First choose (a) € span{w, ey, ea,...}. Then there exists a finite index set J such that

(a) = bw + Z cj€;

jeJ

Then by construction of w, we have that a,, = b for all but finitely many n, namely for all n ¢ J.
Thus (a) € Z C Zg.
Next, choose (b) € Zg. Then there exists z € R such that b, = x for all but finitely many n. Let
J={neN|b, #x}and define ¢; =bj —x forall j€ J. Nowz - w;+c¢j=x-14+ (b —z) =b;
for all j € J and so
(b) = zw + chej € span{w, ey, ea,...}
Jj€J

Therefore we have both inclusions and span {w, ey, es,...} = Zg. OJ
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6.2

The doubly infinite row vectors (a) = (...,a_1,a9,a1,...), with a; real form a vector space. Prove
that this space is isomorphic to R*°.

Solution.

Proof.
The very useful set-theoretic fact we need is that N and Z have the same cardinality. Indeed,

consider the bijection

2 if n is even
:N—Z, n) =< 2
f f) {—”51 if n is odd
If we denote the set of doubly infinite row vectors by R, then consider the map

@ : R® — R*

where given (a) € R*, we define p(a)n, = ag4(,), where g = f~1. This map is bijective, namely
with inverse 1 (), = by(,). Furthermore, note that for all n we have

(P(a + b)n = (CL + b)g(n) = Qg(n) + bg(n) = go(a)n + So(b)n = 90((1 + b) = QO(CL) + (p(b)

and
e(c-(a))n = (¢ (a))gm) = ¢ agm) = ¢ p(a)n = ¢(c-(a)) = c- p(a)

Thus ¢ is a vector space isomorphism. O
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6.3

For every positive integer, we can define the space ¢ to be the space of sequences such that
> ]ai|P < oo. Prove that P is a proper subspace of P11,

Solution.

Proof.
This is really a question in analysis more than anything, but note that if we have a sequence
(a) € £P, then

oo
Z |anP < 0o = lim |a,|[P =0

In particular, this means that there exists N > 0 such that |a,,[P < 1 for all m > N and

(o]
Z |am|P < oo. Furthermore, |a;,|P <1 = |a;,| < 1 and so
m=N

(0.) [o¢] (e.)
Z |am|Pt! = Z |lam[Plam| < Z |am [P < oo
m=N m=N m=N

and clearly S0 g, [P is finite, so we have 31°° |a,[P*! < oo and (a) € /P71, or in short,
¢? C P! and since both are vector spaces it is a subspace. Finally, to show it is proper we
need to find a sequence (a) € £P*1 such that (a) ¢ ¢P. Consider the sequence

1
Ap = —
n W
Then
P _— — p+1 _
SlaP =Yt g i SlaPt=d <
n=1 n=1 n=1 n=1
by the p-series test. Therefore /P is a proper subspace of P11 O
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6.4

Let V be a vector space that is spanned by a countably infinite set. Prove that every independent
subset of V' is finite or countably infinite.

Solution.

Proof.

Let V = span {vy,vs,...} and let S C V be an independent subset. Note that for every w € S
and by definition of span, there exists a positive integer k such that w € span{vq,ve, ..., vt}

Hence for every w € S, define
ky :=min{k € N | w € span {v1,ve,...,v5}}
We claim that for every K € N, there are only finitely many w € S such that k, = K.

To see this, choose K € N and let Sx = {w € S | ky, = K}. Note that Sk C S is
the subset of an independent set, so it must also be independent. However, we also
have that S C span {v1,...,vk} is the subset of a finite-dimensional subspace, so by
Corollary 3.7.7, Sk is finite.

Again since S C V = span {v;,vg, ... }, we then have

S=|J{weS|ky=K}
KeN

which is a countable union of finite sets, therefore S is countable (finite or countably infinite). [

[NB: For those worried about Axiom of Choice when defining k,,, this definition only needs the
well-orderedness of N; it would be an issue if we were to choose a finite linear combination for
each z € S, since the whole point is that we do not know a priori that S is countable.]
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MISCELLANEOUS PROBLEMS

M.1

Consider the determinant function det : F2*2 — F, where F = [, is the prime field of order p and
F?*2 ig the space of 2 x 2 matrices. Show that this map is surjective, that all nonzero values of
the determinant are taken on the same number of times, but that there are more matrices with
determinant 0 than with determinant 1.

Solution.
First, for sujectivity note for any k € F' that

k 0
det[o 1]—]@

Next, note that if we restrict our determinant to ¢ : GLy(F) — F*, we have a surjective
homomorphism (as det(AB) = (det A)(det B)) with kernel SLy(F'), and so by Prop 2.7.15 we
have the inverse image ¢~ 1(k) is the coset kSLo(F). In particular, every coset has the same
number of elements and thus for every k € F*,

[{det A = k}| = |7 (k)| = |kSL2(F)| = |SL2(F)| = |{det A = 1}
and so every nonzero value of the determinant is taken on the same number of times.

Finally, we have from Exercise 4.4(b) that the order of GLy(F,) is p(p + 1)(p — 1)?
and clearly the order of F2*2 is p?, so the number of matrices with determinant 0 is

[{det A =0}| = p* — |GLy(F)| =p* = (p* —p* —p*+p) =p° +p* —p
But we also have from Exercise 4.4(b) that the order of SLy(F),) is p(p + 1)(p — 1) and so

[{det A = 1}| = |SLy(F)| = p* —p < p* —p+p* = |[{det A = 0}
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M.2

Let A be a real n x n matrix. Prove that there is an integer N such that A satisfies a nontrivial
polynomial relation AN +¢en_1 AN 14+ 4+ 1A+ ¢o = 0.

Solution.

Proof.

Note that we can consider the n x n matrix A as a vector in R”Q, and so define the vector aj to
correspond to A*. Then by Theorem 3.4.18 (more specifically, its contrapositive) we have that
any set of n? + 1 vectors in R™ must be linearly dependent, i.e. there exists a nontrivial relation

bp2y1ap241 + - +b1ap =0
and let N be the largest index such that by # 0. Then we have
byay +---+bia; =0
Finally set ¢co = 0 and ¢; = bb—]; fori=1,..., N to get
0=bnan +bn_1an—1+ -+ biaq
by bn_1

b1
— e — 0
bNaN-i- by aN—1+ -+ bNa1+

=an +cN-1aN—-1 + -+ cCcra1 +

And since the zero vector corresponds to the zero matrix, this gives

AN 4oy 1 AN T A =0
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M.3

(a) Let z(t) and y(t) be quadratic polynomials with real coefficients. Prove that the image of the
path (z(t),y(t)) is contained in a conic, i.e., that there is a real quadratic polynomial f(z,y)
such that f(x(t),y(t)) is identically zero.

(b) Let x(t) = t*> — 1 and y(t) = t3 —t. Find a nonzero real polynomial f(z,y) such that f(z(t),y(t))
is identically zero. Sketch the locus {f(z,y) = 0} and the path (x(t),y(t)) in R?.

(c) Prove that every pair z(t),y(t) of real polynomials satisfies some real polynomial relation

f(z,y)=0.

Solution.

(a) Proof.
Note that any quadratic polynomial F(z,y) is of the form

F(z,y) = a+bx + cy + dz® + ey® + fay
and our path components are of the form
z(t) = a1 + agt + ast® and y(t) = B1 + Bat + Bst’

Hence when we plug these into F' we get (as a polynomial in ¢)

F(a(t),y(t) = a+b(x(t) + c(y(t) + d(x(t)? + e(y(t))* + f((z(t)y(t))

= a + b(og + agt + ast?) + c(By + Pat + Bst?) + d(aq + ast + ast?)?
+ e(B1 + Bat + PBst®)? + f([on + oot + ast?][B1 + Bat + Bst?])

= (a+bay + cBr +dai +ef? + farB)
+ t(bag + B2 + 2dagas + 2ef1 82 + fla1 B2 + asBi])
+ t*(bag + cf3 + d[2c1as + 3] + e[2B183 + B3] + floaBs + azfBz + azBi])
+ t°(2dasas + 220 + floofs + a3Bo])
+ t4(do2 + ea? + faszfs)

Hence to get F(z(t),y(t)) to be identically zero, we need to solve the system

a+ba1+cﬂl+da%+eﬁ%+falﬁl =0
bag + cBa + 2daiag + 2ef1 8 + flan B + azfBi] =0
bag + cfB3 + d[2a1a3 + CY%] + 6[2ﬂ153 -+ 5%] -+ f[alﬂ;; + B + 043,31] =0
2dagas + 2efaP3 + flaofs + asfBs] =

da% + 60&% + fasfs =0

which is five equations in six unknowns (a, b, ¢, d, e, f), which will always have a solution and
thus such an F' will always exist. O
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(b)

Note that y(t) = t(t? — 1) = tx(t), so y*> = t?22 = (2 + 1)z2. Thus the polynomial
F(z,y) = y* — (z + 1)2? should work. Indeed,

Fa(t), y(t)) =) = ((#* = 1) + 1)(#* ~ 1)°

(t°
(t5 — 2t* +¢2) — 2(¢t* — 2t + 1)
0

We now graph:

1 1
— —0.5 0.5 1 1:5 — —0.5 0.5 1 1.5
-1 -1
{F(x,y) =0} (z(t),y(t))
And note the two are the exact same.
Proof.

Let z(t) and y(¢) be polynomials in ¢ of degree n. Note that any polynomial F(z,y) of
degree m is a linear combination of

m m—1

{1a$,?/’9527?/2a$y7~'a$ , L yu"'vxym_17ym} :{ajlyj | O§Z+j Sm}

and hence F'(z(t),y(t)) will be a polynomial in ¢ of degree < mn. Furthermore, we have

{z'y? |0 < itj <m}| = |{(i.§) |iti=kfor k=0,...,m}| =Y (k+1) = %[(m+1)(m+2)]
k=0

So we want the case, as in the proof of (a), of the polynomial F(x(t),y(t)) with < mn + 1
terms being less than the 5[(m + 1)(m + 2)] coefficients we get in F(z,y). In other words,
given a fixed n, we want to find an m such that 3[(m + 1)(m + 2)] > mn + 1. Indeed, note

(m+1)(m+2)

5 >mn+1 <= m?>+3m+2>2mn+2 <= m?+(3-2n)m >0

which holds for any m > 2n — 3, say m = 2n — 2. Therefore every pair x(t), y(t) of degree-n
polynomials satisfy a nonzero degree-(2n — 2) polynomial relation F(x,y) = 0. O
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M.4

Let V be a vector space over an infinite field F'. Prove that V is not the union of finitely many
proper subspaces.

Solution.

Proof.

Suppose otherwise, i.e. there exists proper subspaces W1,..., W,, such that V. =Wy U.---UW,.
Without loss of generality, let n be the smallest number of proper subspaces needed. Now choose
vy € Wy such that vy ¢ Wo U --- UW,,. Note that v; must exist since otherwise

Wiy cWeUu---UW, = V=W iuWsyUu.---UuW,=WyU---UW,

which contradicts the minimality of n. Next choose vy € V' \ W; (which is nonempty since W1 is
proper) and consider elements on the “line” L := {v1 + avs | @ € F'}. Since this is a subset of V,
it must intersect some W;. We consider cases:

e ¢ = 1: Note that if there exists a nonzero o € F' such that v; + avy € Wy, then
avy = (v +avy) —v1 E W) = vg = ofl(an) e W
which is impossible. Thus LN W = {v1} (as v; € L when we take a = 0).

e ¢ > 2: Note that if L N W; has at least two elements, then there exists distinct elements
a, B € F such that

v1 + ave,v1 + Pra €W, = (a— B)ve = (v1 + avg) — (v1 + Bve) € W; = v € W;

and
vp W, = ave e W; = v1 = (v1 + avg) — (avg) € W;

Hence vq € W; for some ¢ > 2, which is impossible. Therefore L N W; can have at most
one element for all i > 2.

Thus we have N
L=LnV=|JLnW,
i=1
which is a finite union of finite (specifically of order < 1) sets, so L is finite. However, note that

since F' is infinite, L must be infinite. Therefore we have a contradiction and so V is not a finite
union of proper subspaces. O
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M.5

Let o be the real cube root of 2.

(a) Prove that (1,a,a?) is an independent set over Q, i.e., that there is no relation of the form
a + ba + ca®? = 0 with integers a, b, c.
Hint: Divide 2% — 2 by cz? + bz + a.

(b) Prove that the real numbers a + ba + ca? with a,b, ¢ in Q form a field.

Solution.

(a) Proof.
Suppose otherwise, i.e. we can find rational numbers %, Z—;, z—;’ (not all zero) such that
% + Z—;a + Z—gaz = (. Since we can simply clear out all the denominators by multiplying by

q1G2q3, without loss of generality we may assume a + ba + ca® = 0 for integers a, b, ¢ not all
zero. Furthermore, note that if ¢ = 0, then we have

ba+a=0 = a:—%EQ

which is impossible and so ¢ # 0.

Thus we have « as a root of the polynomial f(z) = cx? 4 bx + a, along with g(z) = 23 — 2
by construction. We now perform polynomial division, i.e. write g(z) = ¢(z)f(x) + r(z) for
polynomials g and r. In particular we get

1 b b2 a ab
glz)=-2——5 and r(z)= (C2—C>x+<02—2> =: Az + B

0= g(a) = g(a) - f(@) +r(a) = g(e) - 0+ r(e) = ()

But
B
rla)=0 = Aa+B=0 = a:—ZEQorAzo

and since « € QQ is impossible, this forces A = 0 and so B = 0 also. Then

b2 b2
A=0 = 72_920 — V¥ —_a=0 = a=—
c c c
Now
b b3 b

which is a contradiction, so our assumption is false and therefore (1, a, @) is independent. [

38



(b) Proof.
First note that with addition

(a+ba+ co?) + (z + ya + z0?) = (a+2) + b+ y)a + (c + 2)a?

clearly we have closure, associativity, commutativity, identity 0 + O0a 4+ 0a?, and inverses
(—a) + (=b)a + (—c)a?. Next we turn to multiplication.
We have product

(a4 ba + ca?)(z + ya + 20?) = az + aya + axa® + bra + bya? + bza® + cxa® + cya® + cza®
= (ax + 2bz + 2cy) + (ay + bx + 2c2)a + (az + by + cx)a?

From this we have closure, associativity, commutativity, and identity 1 4+ Ocr + 0. So all
we need to show is that we have multiplicative inverses. Given a + ba + ca® # 0, we want to
find z,y, z € Q such that the above product is 1 + Oa + 0a?, i.e. we have the system

ax +2bz+2cy =1 a 2c 2b| [z 1
ay+br+2cz =0 o~ b a 2| |y| = |0 (%)
az + by + cx =0 c b oa] |z 0

Theorem 1.2.21 implies that (x) has a unique solution in Q if and only if

a 2c 2b| |z 0
b a 2| |yl =10 (1)
c b a z 0

only has the trivial solution in Q. Thus if (1) has a nontrivial solution, we have

a 2c 2b| |z 0
b a 2| |y| = [0] = (a+ba+ca?)(z+ya+ za?) =0+ 0a + 0a?
c b af |z 0

and since we have a + ba + ca? # 0, this forces = + ya + za? = 0 for (x,y,2) # (0,0,0),
which contradicts (a). Thus () will always have a solution in @, and so (a + ba + ca?)~!
exists and therefore {a + ba + ca? | a,b,c € Q} is a field. O
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M.6

My cousin Phil collects hot sauce. He has about a hundred different bottles on the shelf, and many
of them, Tabasco for instance, have only three ingredients other than water: chilis, vinegar, and salt.
What is the smallest number of bottles of hot sauce that Phil would need to keep on hand so that
he could obtain any recipe that uses only these three ingredients by mixing the ones he had?

Solution.

If we treat each recipe as a vector in R3 where each component is the amount of chilis, vinegar,
and salt respectively, then we are simply looking for a basis of R3, which will have 3 vectors.
Hence 3 bottles of hot sauce is the smallest number needed.
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