1 - REVIEW OF RING THEORY

CoLIN COMMANS

DEFINITIONS

We first recall familiar definitions.

Definition. A ring is a nonempty set R, together with two binary operations addition (+) and
multiplication (-) where:

1. R is an abelian group under addition:

Va,b,c€ R, (a+b)+c=a+ (b+¢)
e J0€e Rsuchthat Vae R, 0+a=a+0=a
eVae R, 3 —a€ Rsuchthat a+ (—a)=—a+a=0
e Va,be R, a+b=b+a
2. Multiplication is associative: Va,b,c € R, (ab)c = a(bc)
3. Multiplicative identity: 3 1 (1 # 0) such that al = la = a for any a € R
4. Distributivity: Va,b,c € R, a(b+ ¢) = ab+ ac and (a + b)c = ac + be
R is a commutative ring if multiplication is commutative, i.e. ab = ba for any a,b € R.

Definition. Let R be a ring. a € R is a unit or invertible if it has a multiplicative inverse, i.e.
J ™! € R such that aa™' = a~'a = 1. The set of all units in R is denoted R* or R*.

Definition. A nonzero commutative ring R is called an integral domain if R has no zero divisors,
i.e. for any a,b € R,
ab=0 = a=0o0rb=0

FIELDS
Definition. A nonzero commutative ring R is a field if every nonzero element of R has an inverse
(or R\ {0} is an abelian group under -).
[N.B. Arbitrary fields will be denoted E, F, K, L, . ... ]

Therefore in a field, multiplication is almost as strong as addition, but 0 has no multiplicative inverse,
so the two operations are not symmetric. We thus have the interesting properties:

1. A field only has two ideals: 0 and the field itself. Hence the notion of a quotient field is essentially
meaningless. Also, every nonzero ring homomorphism between fields in injective (we will call
such maps embeddings later).

2. The Cartesian product of fields is not a field, since
i.e. zero divisors exist.

3. If F < F is a field extension, i.e. I is a subfield of E, then we can view E as a vector space
over F'.



BAsic RESULTS

Remark.
Note that any field must necessarily be an integral domain, since if ab = 0 and if a # 0, then a~
exists and

1

0=a'0=a"tab=0b
Thus either b =0 or a = 0. A
Theorem.
1. A finite integral domain is a field.
2. The ring Zy, is a field if and only if n is prime.
Proof.

1. Let R be a finite integral domain. We only need to show that all nonzero elements are invertible.
Choose a € R such that a # 0 and a # 1. We know that

(a) ={d" |n=1,2,...}

is a (multiplicative) subgroup of R, hence it is finite. In particular, 1 € (a), so 1 = a™ for some
m > 1. Now setting b = a™ !, we have

1 m {am_la = ba
pr a fr

aa™ 1 =ab

Thus a is invertible.

2. <= Let n be prime. Z, is a nonzero commutative ring, so we only need to show multiplicative
inverses exist. Choose a € Z, with a # 0. Since 0 < a < n, we have a not a multiple of n.
Since n is prime, this means ged(a,n) = 1. By Bezout’s identity, there exists p, g € Z such that
pa + gn = 1. Now if we set p’ = p mod n, we have

pa+qn=1 = pa+0=1 modn = p' =a !

= : Let n be not prime. Then we can write n = ab for 1 < a,b < n. In particular, a and b are
nonzero but

ab=0 € Zy,

Hence Z,, is not an integral domain, which from the remark means 7Z,, is not a field.

Definition. Let R be a ring. The smallest possible integer ¢ for which
cl=1+14---+1=0
—_—
C

or equivalently for which ¢R = {0}, is called the characteristic of R, denoted ¢ = char(R). If no
such number exists, we say that R has characteristic zero.



Theorem.
All fields have prime characteristic, or characteristic zero.

Proof.
Let F be a field and let ¢ = char(F') # 0. Now suppose ¢ = ab. Then

O=cl=(ab)l=1+1+ - +1+141+4--+1

ab
=141+ +D+F+Q+1+---+1)
a a
b times
=1+14+--4+1)-1+1+---41) (via Distributivity)
a b
=al-bl
Now, note that F' must be an integral domain, so either al = 0 or b1 = 0. But since by definition ¢
is the smallest such integer, therefore a = ¢ or b = ¢. Thus c is irreducible, hence prime. O
Theorem.

If F is a field and S is a finite subgroup of the multiplicative group F*, then S is a cyclic group. In
particular, if F' is finite then F* is cyclic.

Proof.
We want to find a single generator of S, i.e. find x € S such that S = (x). Equivalently,

S=(z) = =1 <= ord(z) = |9

Assume otherwise, i.e. the largest order of an element of S is some number n < |S|. This means
that n divides the order of every element of S, i.e. n is the lem of all orders. Therefore for every
x € S, we have ™ = 1. However, the polynomial

" —1
can only have at most n roots in F' (and thus in S) as F'is a field. Therefore
IS|={zxeS|a"-1=0} <n<|I]

which is a contradiction. O



