
1 – REVIEW OF RING THEORY
Colin Commans

Definitions

We first recall familiar definitions.

Definition. A ring is a nonempty set R, together with two binary operations addition (+) and
multiplication (·) where:

1. R is an abelian group under addition:

• ∀a, b, c ∈ R, (a+ b) + c = a+ (b+ c)

• ∃ 0 ∈ R such that ∀a ∈ R, 0 + a = a+ 0 = a

• ∀a ∈ R, ∃ − a ∈ R such that a+ (−a) = −a+ a = 0

• ∀a, b ∈ R, a+ b = b+ a

2. Multiplication is associative: ∀a, b, c ∈ R, (ab)c = a(bc)

3. Multiplicative identity: ∃ 1 (1 ̸= 0) such that a1 = 1a = a for any a ∈ R

4. Distributivity: ∀a, b, c ∈ R, a(b+ c) = ab+ ac and (a+ b)c = ac+ bc

R is a commutative ring if multiplication is commutative, i.e. ab = ba for any a, b ∈ R.

Definition. Let R be a ring. a ∈ R is a unit or invertible if it has a multiplicative inverse, i.e.
∃ a−1 ∈ R such that aa−1 = a−1a = 1. The set of all units in R is denoted R× or R∗.

Definition. A nonzero commutative ring R is called an integral domain if R has no zero divisors,
i.e. for any a, b ∈ R,

ab = 0 =⇒ a = 0 or b = 0

Fields

Definition. A nonzero commutative ring R is a field if every nonzero element of R has an inverse
(or R \ {0} is an abelian group under ·).[

N.B. Arbitrary fields will be denoted E,F,K,L, . . . .
]

Therefore in a field, multiplication is almost as strong as addition, but 0 has no multiplicative inverse,
so the two operations are not symmetric. We thus have the interesting properties:

1. A field only has two ideals: 0 and the field itself. Hence the notion of a quotient field is essentially
meaningless. Also, every nonzero ring homomorphism between fields in injective (we will call
such maps embeddings later).

2. The Cartesian product of fields is not a field, since

(0, 1) · (1, 0) = (0, 0)

i.e. zero divisors exist.

3. If F ≤ E is a field extension, i.e. F is a subfield of E, then we can view E as a vector space
over F .
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Basic Results

Remark.
Note that any field must necessarily be an integral domain, since if ab = 0 and if a ̸= 0, then a−1

exists and
0 = a−10 = a−1ab = b

Thus either b = 0 or a = 0. △

Theorem.

1. A finite integral domain is a field.

2. The ring Zn is a field if and only if n is prime.

Proof.

1. Let R be a finite integral domain. We only need to show that all nonzero elements are invertible.
Choose a ∈ R such that a ̸= 0 and a ̸= 1. We know that

⟨a⟩ = {an | n = 1, 2, . . . }

is a (multiplicative) subgroup of R, hence it is finite. In particular, 1 ∈ ⟨a⟩, so 1 = am for some
m > 1. Now setting b = am−1, we have

1 = am =

{
am−1a = ba

aam−1 = ab

Thus a is invertible.

2. ⇐= : Let n be prime. Zn is a nonzero commutative ring, so we only need to show multiplicative
inverses exist. Choose a ∈ Zn with a ̸= 0. Since 0 < a < n, we have a not a multiple of n.
Since n is prime, this means gcd(a, n) = 1. By Bezout’s identity, there exists p, q ∈ Z such that
pa+ qn = 1. Now if we set p′ ≡ p mod n, we have

pa+ qn = 1 =⇒ p′a+ 0 ≡ 1 mod n =⇒ p′ = a−1

=⇒ : Let n be not prime. Then we can write n = ab for 1 < a, b < n. In particular, a and b are
nonzero but

ab ≡ 0 ∈ Zn

Hence Zn is not an integral domain, which from the remark means Zn is not a field.

Definition. Let R be a ring. The smallest possible integer c for which

c1 := 1 + 1 + · · ·+ 1︸ ︷︷ ︸
c

= 0

or equivalently for which cR = {0}, is called the characteristic of R, denoted c = char(R). If no
such number exists, we say that R has characteristic zero.
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Theorem.
All fields have prime characteristic, or characteristic zero.

Proof.
Let F be a field and let c = char(F ) ̸= 0. Now suppose c = ab. Then

0 = c1 = (ab)1 = 1 + 1 + · · ·+ 1 + 1 + 1 + · · ·+ 1︸ ︷︷ ︸
ab

= (1 + 1 + · · ·+ 1)︸ ︷︷ ︸
a

+ · · ·+ (1 + 1 + · · ·+ 1)︸ ︷︷ ︸
a︸ ︷︷ ︸

b times

= (1 + 1 + · · ·+ 1)︸ ︷︷ ︸
a

· (1 + 1 + · · ·+ 1)︸ ︷︷ ︸
b

(via Distributivity)

= a1 · b1

Now, note that F must be an integral domain, so either a1 = 0 or b1 = 0. But since by definition c
is the smallest such integer, therefore a = c or b = c. Thus c is irreducible, hence prime.

Theorem.
If F is a field and S is a finite subgroup of the multiplicative group F×, then S is a cyclic group. In
particular, if F is finite then F× is cyclic.

Proof.
We want to find a single generator of S, i.e. find x ∈ S such that S = ⟨x⟩. Equivalently,

S = ⟨x⟩ ⇐⇒ x|S| = 1 ⇐⇒ ord(x) = |S|

Assume otherwise, i.e. the largest order of an element of S is some number n < |S|. This means
that n divides the order of every element of S, i.e. n is the lcm of all orders. Therefore for every
x ∈ S, we have xn = 1. However, the polynomial

xn − 1

can only have at most n roots in F (and thus in S) as F is a field. Therefore

|S| = |{x ∈ S | xn − 1 = 0}| ≤ n < |S|

which is a contradiction.
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