
1.Differentiation

Definition. Let f : [a, b] → R be a function. For any x ∈ [a, b], we define

ϕ(t) =
f(t)− f(x)

t− x
a < t < b, t ̸= x

Define the derivative of f at x to be

f ′(x) = lim
t→x

ϕ(t) ∈ R

provided that the limit exists.

Remark.
We think of f ′ as a function x 7→ f ′(x) where dom f ′ ⊂ dom f . In general, f needs to be defined in
a neighborhood of x in order for f ′(x) to be defined. △

Lemma.
Let f : [a, b] → R. If f is differentiable at x ∈ (a, b), then it is continuous at x.

Proof.

f(t)− f(x) =
f(t)− f(x)

t− x
(t− x) = ϕ(t)(t− x)

Now taking limits,
lim
t→x

(ϕ(t)(t− x)) = f ′(x) · 0 = 0

Thus lim
t→x

f(t) = f(x).

Remark.
Continuity is a necessary, but not sufficient, condition for differentiability.
To see this, consider f(x) = |x|:{

ϕ(t) → 1 as t → 0+

ϕ(t) → −1 as t → 0−
=⇒ f ′(0) DNE

△

Proposition.
Let f, g : [a, b] → R be differentiable at x. Then

(1) f + g, fg, f/g (g ̸= 0) are all differentiable at x.

(2) These derivatives can be written in terms of f and g:

(f + g)′ = f ′ + g′ (fg)′ = f ′g + fg′ (f/g)′ = (gf ′ − fg′)/(g2)

[
N.B. Respectively we call these formulas Linearity, Product Rule, and Quotient Rule

]
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Proof.
We compute the formulas directly. Note that Quotient Rule is just an application of Product Rule
via f/g = f(1/g), so it suffices to prove the first two formulas.

1. Let h = f + g. Then

h(t)− h(x)

t− x
=

f(t) + g(t)− f(x)− g(x)

t− x
=

f(t)− f(x)

t− x
+

g(t)− g(x)

t− x

lim t→x
=⇒ h′(x) = f ′(x) + g′(x)

2. Let h = fg. Note that

h(t)− h(x) = f(t)g(t)− f(x)g(x) = f(t)g(t) + [−f(t)g(x) + f(t)g(x)]− f(x)g(x)

= f(t)[g(t)− g(x)] + [f(t)− f(x)]g(x)

Then
h(t)− h(x)

t− x
= f(t)

(
g(t)− g(x)

t− x

)
+ g(x)

(
f(t)− f(x)

t− x

)
t→x
=⇒ h′(x) = lim

t→x
f(t)g′(x) + lim

t→x
g(t)f ′(x) = f(x)g′(x) + f ′(x)g(x)

where the final equality holds by continuity of f and g by the previous Lemma.

Example.

(1) f(x) = constant:

Then ϕ(t) = 0 for all t, hence f ′(x) = 0 for all x.

(2) f(x) = x:

Then ϕ(t) = 1 for all t, hence f ′(x) = 1 for all x.

(3) f(x) = xn:

We claim f ′(x) = nxn−1. Use induction on n. Our base case is n = 1, and f ′(x) =
1 = 1x0. Now by product rule

f(x) = xn = xxn−1 =⇒ f ′(x) = d
dx(x)x

n−1 + x d
dx(x

n−1)
IH
= 1xn−1 + x((n− 1)xn−2)

= xn−1 + (n− 1)xn−1

= nxn−1

(4) If f(x) = cg(x) for some constant c, then by product rule

f ′(x) = d
dx(c)g(x) + c d

dx(g(x)) = 0g(x) + cg′(x) = cg′(x)

(5) By linearity, and the above examples, any polynomial is differentiable.
N.B. Moving forward, when showing different results we will not describe all details in
our hypotheses, e.g. if we are mentioning f is differentiable, then you may assume that we
actually have a function f : [a, b] → R to begin with. The theorem statements in analysis
are usually long as-is, so we want to emphasize the result much more than everything
standard that we are assuming at the beginning.


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Proposition. (Chain Rule)
Suppose f is continuous on [a, b], f differentiable at x, dom g ⊃ im f , and g differentiable at f(x).
If h = g ◦ f : (a, b) → R is the composition, then h is differentiable at x and h′(x) = g′(f(x)) · f ′(x).

Proof.
Note that for any t, there exists u such that

f ′(x) + u =
f(t)− f(x)

t− x
(⋆)

(by just taking the difference of the known terms). We can think of this u as a function of t, and by
definition of derivative we have u(t) → 0 as t → x. Now letting y = f(x), we can similarly find

g(s)− g(y)

s− y
= g′(y) + v(s) where lim

s→y
v(s) = 0 (⋆⋆)

Now letting s = f(t), note by continuity of f that s → y as t → x. Then

h(t)− h(x) = g(f(t))− g(f(x)) = g(s)− g(y)
(⋆⋆)
= (g′(y) + v(s))(s− y)

= (g′(f(x)) + v(f(t)))(f(t)− f(x))

(⋆)
= (g′(f(x)) + v(f(t)))(f ′(x) + u(t))(t− x)

=⇒ h(t)− h(x)

t− x
= (g′(f(x)) + v(f(t)))(f ′(x) + u(t))

t→x−→ (g′(f(x)) + lim
s→y

v(s))(f ′(x) + lim
t→x

u(t))

=⇒ h′(x) = (g′(f(x)) + 0)(f ′(x) + 0) = g′(f(x)) · f ′(x)

Example.

(1)

f(x) =

{
x sin( 1x) x ̸= 0

0 x = 0

f is continuous away from zero as a composition of continuous functions, and

|f(x)− 0| = |f(x)| ≤ |x|| sin( 1x)| ≤ |x|1 x→0−→ 0

Thus f is continuous everywhere.
Next, we determine where f is differentiable. Away from zero, we are good by the chain rule,
but at zero we need to check by definition

ϕ(t) =
f(t)− f(0)

t− 0
=

t sin(1t )− 0

t
= sin(1t )

t→0
̸−→ 0


N.B. To more conclusively show the limit does not exist, we can construct sequences
(an) and (bn) that both tend to 0 such that sin(1/an) = 1 and sin(1/bn) = −1 for all
n. In particular, let

an =
1

π/2 + 2πn
and bn =

1

3π/2 + 2πn


Hence f ′ is not differentiable everywhere.
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(2)

f(x) =

{
x2 sin( 1x) x ̸= 0

0 x = 0

We claim f is continuous everywhere, as

|f(x)− 0| = |f(x)| ≤ |x|| sin( 1x)| ≤ |x2|1 x→0−→ 0

and we further claim that f ′ exists everywhere, as

ϕ(t) =
t2 sin(1t )− 0

t− 0
= t sin(1t )

and

−1 ≤ sin(1/t) ≤ 1 =⇒ −t ≤ t sin(1/t) ≤ t =⇒ 0 = lim
t→0

−t ≤ lim
t→0

ϕ(t) ≤ lim
t→0

t = 0 =⇒ f ′(0) = 0

Thus we can write the derivative

f ′(x) =

{
2x sin( 1x)− cos( 1x) x ̸= 0

0 x = 0

Note that this is not continuous at zero, by a similar argument to (1), so it is certainly not
differentiable at zero.
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